論文の概要: Text-to-SQL Task-oriented Dialogue Ontology Construction
- arxiv url: http://arxiv.org/abs/2507.23358v1
- Date: Thu, 31 Jul 2025 09:08:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.405869
- Title: Text-to-SQL Task-oriented Dialogue Ontology Construction
- Title(参考訳): テキストからSQLへのタスク指向対話オントロジーの構築
- Authors: Renato Vukovic, Carel van Niekerk, Michael Heck, Benjamin Ruppik, Hsien-Chin Lin, Shutong Feng, Nurul Lubis, Milica Gasic,
- Abstract要約: 本稿では,タスク指向対話構築手法であるTeQoDOを紹介する。
自律的にTODをスクラッチから構築する。
- 参考スコア(独自算出の注目度): 7.216568937838859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are widely used as general-purpose knowledge sources, but they rely on parametric knowledge, limiting explainability and trustworthiness. In task-oriented dialogue (TOD) systems, this separation is explicit, using an external database structured by an explicit ontology to ensure explainability and controllability. However, building such ontologies requires manual labels or supervised training. We introduce TeQoDO: a Text-to-SQL task-oriented Dialogue Ontology construction method. Here, an LLM autonomously builds a TOD ontology from scratch without supervision using its inherent SQL programming capabilities combined with dialogue theory provided in the prompt. We show that TeQoDO outperforms transfer learning approaches, and its constructed ontology is competitive on a downstream dialogue state tracking task. Ablation studies demonstrate the key role of dialogue theory. TeQoDO also scales to allow construction of much larger ontologies, which we investigate on a Wikipedia and ArXiv dataset. We view this as a step towards broader application of ontologies to increase LLM explainability.
- Abstract(参考訳): 大規模言語モデル(LLM)は汎用的な知識源として広く使われているが、パラメトリックな知識に依存しており、説明可能性や信頼性を制限している。
タスク指向対話(TOD)システムでは、この分離は明示的なオントロジーによって構成された外部データベースを使用して説明可能性と制御性を保証する。
しかし、このようなオントロジを構築するには、手動のラベルや教師付きトレーニングが必要である。
テキストからSQLへのタスク指向対話オントロジー構築法であるTeQoDOを紹介する。
ここで、LLMは、その固有のSQLプログラミング機能と、プロンプトに提供される対話理論を組み合わせて、監督なしで、スクラッチからTODオントロジーを自律的に構築する。
我々は,TeQoDOが伝達学習の手法より優れており,その構築したオントロジーは下流対話状態追跡タスクにおいて競合することを示す。
アブレーション研究は対話理論の鍵となる役割を証明している。
TeQoDOはまた、WikipediaとArXivのデータセットで調べる、はるかに大きなオントロジーの構築を可能にするためにスケールする。
我々はこれを、LCM説明可能性を高めるためのオントロジーの広範な適用に向けた一歩とみなしている。
関連論文リスト
- KAG-Thinker: Interactive Thinking and Deep Reasoning in LLMs via Knowledge-Augmented Generation [35.555200530999365]
我々は、KAG-Thinkerを導入し、KAGをマルチターン対話型思考と、専用パラメータライト大言語モデル(LLM)を利用した深い推論フレームワークにアップグレードする。
提案手法は,複雑な問題を解くための構造化思考プロセスを構築し,推論過程の論理的一貫性と文脈的整合性を高める。
論文 参考訳(メタデータ) (2025-06-21T14:58:53Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Structure Guided Prompt: Instructing Large Language Model in Multi-Step
Reasoning by Exploring Graph Structure of the Text [44.81698187939784]
本稿では,大規模言語モデル(LLM)の多段階推論能力向上を目的としたフレームワークであるStructure Guided Promptを紹介する。
実験の結果,このフレームワークはLLMの推論能力を大幅に向上し,より広い範囲の自然言語シナリオを拡張できることがわかった。
論文 参考訳(メタデータ) (2024-02-20T22:56:23Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - Frugal Prompting for Dialog Models [17.048111072193933]
本研究では,大規模言語モデル(LLM)を用いた対話システム構築のための異なるアプローチについて検討する。
即時チューニングの一環として、インストラクション、例題、現在のクエリ、追加のコンテキストを提供する様々な方法を試行する。
この研究は、最適な使用情報密度を持つダイアログ履歴の表現も分析する。
論文 参考訳(メタデータ) (2023-05-24T09:06:49Z) - Prompt Learning for Few-Shot Dialogue State Tracking [75.50701890035154]
本稿では,限られたラベル付きデータを用いて,対話状態追跡(DST)モデルを効率的に学習する方法に焦点を当てる。
本稿では,2つの主要なコンポーネントである値ベースプロンプトと逆プロンプト機構からなる,数ショットDSTのためのプロンプト学習フレームワークを設計する。
実験により、我々のモデルは未確認のスロットを生成し、既存の最先端の数ショット法より優れていることが示された。
論文 参考訳(メタデータ) (2022-01-15T07:37:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。