Enhanced Arabic Text Retrieval with Attentive Relevance Scoring
- URL: http://arxiv.org/abs/2507.23404v1
- Date: Thu, 31 Jul 2025 10:18:28 GMT
- Title: Enhanced Arabic Text Retrieval with Attentive Relevance Scoring
- Authors: Salah Eddine Bekhouche, Azeddine Benlamoudi, Yazid Bounab, Fadi Dornaika, Abdenour Hadid,
- Abstract summary: Arabic poses a particular challenge for natural language processing and information retrieval.<n>Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources.<n>We present an enhanced Dense Passage Retrieval framework developed specifically for Arabic.
- Score: 12.053940320312355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Arabic poses a particular challenge for natural language processing (NLP) and information retrieval (IR) due to its complex morphology, optional diacritics and the coexistence of Modern Standard Arabic (MSA) and various dialects. Despite the growing global significance of Arabic, it is still underrepresented in NLP research and benchmark resources. In this paper, we present an enhanced Dense Passage Retrieval (DPR) framework developed specifically for Arabic. At the core of our approach is a novel Attentive Relevance Scoring (ARS) that replaces standard interaction mechanisms with an adaptive scoring function that more effectively models the semantic relevance between questions and passages. Our method integrates pre-trained Arabic language models and architectural refinements to improve retrieval performance and significantly increase ranking accuracy when answering Arabic questions. The code is made publicly available at \href{https://github.com/Bekhouche/APR}{GitHub}.
Related papers
- HeQ: a Large and Diverse Hebrew Reading Comprehension Benchmark [54.73504952691398]
We set out to deliver a Hebrew Machine Reading dataset as extractive Questioning.<n>The morphologically rich nature of Hebrew poses a challenge to this endeavor.<n>We devise a novel set of guidelines, a controlled crowdsourcing protocol, and revised evaluation metrics.
arXiv Detail & Related papers (2025-08-03T15:53:01Z) - Open Automatic Speech Recognition Models for Classical and Modern Standard Arabic [15.807843278492847]
We introduce a universal methodology for Arabic speech and text processing designed to address unique challenges of the language.<n>We train two novel models based on the FastConformer architecture: one designed specifically for Modern Standard Arabic (MSA) and the other, the first unified public model for both MSA and Classical Arabic (CA)<n>The MSA model sets a new benchmark with state-of-the-art (SOTA) performance on related datasets, while the unified model achieves SOTA accuracy with diacritics for CA while maintaining strong performance for MSA.
arXiv Detail & Related papers (2025-07-18T14:42:18Z) - Advancing Arabic Reverse Dictionary Systems: A Transformer-Based Approach with Dataset Construction Guidelines [0.8944616102795021]
This study addresses the critical gap in Arabic natural language processing by developing an effective Arabic Reverse Dictionary (RD) system.<n>We present a novel transformer-based approach with a semi-encoder neural network architecture featuring geometrically decreasing layers.<n>Our methodology incorporates a comprehensive dataset construction process and establishes formal quality standards for Arabic lexicographic definitions.
arXiv Detail & Related papers (2025-04-30T09:56:36Z) - Second Language (Arabic) Acquisition of LLMs via Progressive Vocabulary Expansion [55.27025066199226]
This paper addresses the need for democratizing large language models (LLM) in the Arab world.<n>One practical objective for an Arabic LLM is to utilize an Arabic-specific vocabulary for the tokenizer that could speed up decoding.<n>Inspired by the vocabulary learning during Second Language (Arabic) Acquisition for humans, the released AraLLaMA employs progressive vocabulary expansion.
arXiv Detail & Related papers (2024-12-16T19:29:06Z) - Exploring Retrieval Augmented Generation in Arabic [0.0]
Retrieval Augmented Generation (RAG) has emerged as a powerful technique in natural language processing.
This paper presents a case study on the implementation and evaluation of RAG for Arabic text.
arXiv Detail & Related papers (2024-08-14T10:03:28Z) - From Multiple-Choice to Extractive QA: A Case Study for English and Arabic [51.13706104333848]
We explore the feasibility of repurposing an existing multilingual dataset for a new NLP task.<n>We present annotation guidelines and a parallel EQA dataset for English and Modern Standard Arabic.<n>We aim to help others adapt our approach for the remaining 120 BELEBELE language variants, many of which are deemed under-resourced.
arXiv Detail & Related papers (2024-04-26T11:46:05Z) - ArabicaQA: A Comprehensive Dataset for Arabic Question Answering [13.65056111661002]
We introduce ArabicaQA, the first large-scale dataset for machine reading comprehension and open-domain question answering in Arabic.
We also present AraDPR, the first dense passage retrieval model trained on the Arabic Wikipedia corpus.
arXiv Detail & Related papers (2024-03-26T16:37:54Z) - ArabicMMLU: Assessing Massive Multitask Language Understanding in Arabic [51.922112625469836]
We present datasetname, the first multi-task language understanding benchmark for the Arabic language.
Our data comprises 40 tasks and 14,575 multiple-choice questions in Modern Standard Arabic (MSA) and is carefully constructed by collaborating with native speakers in the region.
Our evaluations of 35 models reveal substantial room for improvement, particularly among the best open-source models.
arXiv Detail & Related papers (2024-02-20T09:07:41Z) - Arabic Sentiment Analysis with Noisy Deep Explainable Model [48.22321420680046]
This paper proposes an explainable sentiment classification framework for the Arabic language.
The proposed framework can explain specific predictions by training a local surrogate explainable model.
We carried out experiments on public benchmark Arabic SA datasets.
arXiv Detail & Related papers (2023-09-24T19:26:53Z) - AceGPT, Localizing Large Language Models in Arabic [73.39989503874634]
The paper proposes a comprehensive solution that includes pre-training with Arabic texts, Supervised Fine-Tuning (SFT) utilizing native Arabic instructions, and GPT-4 responses in Arabic.
The goal is to cultivate culturally cognizant and value-aligned Arabic LLMs capable of accommodating the diverse, application-specific needs of Arabic-speaking communities.
arXiv Detail & Related papers (2023-09-21T13:20:13Z) - TArC: Incrementally and Semi-Automatically Collecting a Tunisian Arabish
Corpus [3.8580784887142774]
This article describes the constitution process of the first morpho-syntactically annotated Tunisian Arabish Corpus (TArC)
Arabish, also known as Arabizi, is a spontaneous coding of Arabic dialects in Latin characters and arithmographs (numbers used as letters)
arXiv Detail & Related papers (2020-03-20T22:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.