Merging Memory and Space: A Spatiotemporal State Space Neural Operator
- URL: http://arxiv.org/abs/2507.23428v1
- Date: Thu, 31 Jul 2025 11:09:15 GMT
- Title: Merging Memory and Space: A Spatiotemporal State Space Neural Operator
- Authors: Nodens F. Koren, Samuel Lanthaler,
- Abstract summary: ST-SSM is a compact architecture for learning solution operators of time-dependent partial differential equations.<n>A theoretical connection is established between s and neural operators, and a unified theorem is proved for the resulting class of architectures.<n>Our results highlight the advantages of dimensionally factorized operator learning for efficient and general PDE modeling.
- Score: 2.0104149319910767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose the Spatiotemporal State Space Neural Operator (ST-SSM), a compact architecture for learning solution operators of time-dependent partial differential equations (PDEs). ST-SSM introduces a novel factorization of the spatial and temporal dimensions, using structured state-space models to independently model temporal evolution and spatial interactions. This design enables parameter efficiency and flexible modeling of long-range spatiotemporal dynamics. A theoretical connection is established between SSMs and neural operators, and a unified universality theorem is proved for the resulting class of architectures. Empirically, we demonstrate that our factorized formulation outperforms alternative schemes such as zigzag scanning and parallel independent processing on several PDE benchmarks, including 1D Burgers' equation, 1D Kuramoto-Sivashinsky equation, and 2D Navier-Stokes equations under varying physical conditions. Our model performs competitively with existing baselines while using significantly fewer parameters. In addition, our results reinforce previous findings on the benefits of temporal memory by showing improved performance under partial observability. Our results highlight the advantages of dimensionally factorized operator learning for efficient and generalizable PDE modeling, and put this approach on a firm theoretical footing.
Related papers
- Latent Mamba Operator for Partial Differential Equations [8.410938527671341]
We introduce the Latent Mamba Operator (LaMO), which integrates the efficiency of state-space models (SSMs) in latent space with the expressive power of kernel integral formulations in neural operators.<n>LaMOs achieve consistent state-of-the-art (SOTA) performance, with a 32.3% improvement over existing baselines in solution operator approximation.
arXiv Detail & Related papers (2025-05-25T11:51:31Z) - Learning to Dissipate Energy in Oscillatory State-Space Models [55.09730499143998]
State-space models (SSMs) are a class of networks for sequence learning.<n>We show that D-LinOSS consistently outperforms previous LinOSS methods on long-range learning tasks.
arXiv Detail & Related papers (2025-05-17T23:15:17Z) - Dense ReLU Neural Networks for Temporal-spatial Model [13.8173644075917]
We focus on fully connected deep neural networks utilizing the Rectified Linear Unit (ReLU) activation function for nonparametric estimation.<n>We derive non-asymptotic bounds that lead to convergence rates, addressing both temporal and spatial dependence in the observed measurements.<n>We also tackle the curse of dimensionality by modeling the data on a manifold, exploring the intrinsic dimensionality of high-dimensional data.
arXiv Detail & Related papers (2024-11-15T05:30:36Z) - AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields [14.219495227765671]
We present AROMA, a framework designed to enhance the modeling of partial differential equations (PDEs) using local neural fields.
Our flexible encoder-decoder architecture can obtain smooth latent representations of spatial physical fields from a variety of data types.
By employing a diffusion-based formulation, we achieve greater stability and enable longer rollouts compared to conventional MSE training.
arXiv Detail & Related papers (2024-06-04T10:12:09Z) - Neural Dynamical Operator: Continuous Spatial-Temporal Model with Gradient-Based and Derivative-Free Optimization Methods [0.0]
We present a data-driven modeling framework called neural dynamical operator that is continuous in both space and time.
A key feature of the neural dynamical operator is the resolution-invariance with respect to both spatial and temporal discretizations.
We show that the proposed model can better predict long-term statistics via the hybrid optimization scheme.
arXiv Detail & Related papers (2023-11-20T14:31:18Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - Learning Space-Time Continuous Neural PDEs from Partially Observed
States [13.01244901400942]
We introduce a grid-independent model learning partial differential equations (PDEs) from noisy and partial observations on irregular grids.
We propose a space-time continuous latent neural PDE model with an efficient probabilistic framework and a novel design encoder for improved data efficiency and grid independence.
arXiv Detail & Related papers (2023-07-09T06:53:59Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.