Machine learning and machine learned prediction in chest X-ray images
- URL: http://arxiv.org/abs/2507.23455v1
- Date: Thu, 31 Jul 2025 11:31:25 GMT
- Title: Machine learning and machine learned prediction in chest X-ray images
- Authors: Shereiff Garrett, Abhinav Adhikari, Sarina Gautam, DaShawn Marquis Morris, Chandra Mani Adhikari,
- Abstract summary: We implement a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments.<n>Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning and artificial intelligence are fast-growing fields of research in which data is used to train algorithms, learn patterns, and make predictions. This approach helps to solve seemingly intricate problems with significant accuracy without explicit programming by recognizing complex relationships in data. Taking an example of 5824 chest X-ray images, we implement two machine learning algorithms, namely, a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments. Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work. Gradient-weighted class activation mapping shows that DenseNet-121 correctly focuses on essential parts of the input chest X-ray images in its decision-making more than the baseline CNN.
Related papers
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.<n>In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.<n>Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Machine learning based biomedical image processing for echocardiographic
images [0.0]
The proposed method uses K-Nearest Neighbor (KNN) algorithm for segmentation of medical images.
The trained neural network has been tested successfully on a group of echocardiographic images.
arXiv Detail & Related papers (2023-03-16T06:23:43Z) - Artificial Intelligence for Automatic Detection and Classification
Disease on the X-Ray Images [0.0]
This work presents rapid detection of diseases in the lung using the efficient Deep learning pre-trained RepVGG algorithm.
We are applying Artificial Intelligence technology for automatic highlighted detection of affected areas of people's lungs.
arXiv Detail & Related papers (2022-11-14T03:51:12Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Image Embedding and Model Ensembling for Automated Chest X-Ray
Interpretation [0.0]
We present and study several machine learning approaches to develop automated Chest X-ray diagnostic models.
In particular, we trained several Convolutional Neural Networks (CNN) on the CheXpert dataset.
We used the trained CNNs to compute embeddings of the CXR images, in order to train two sets of tree-based classifiers from them.
arXiv Detail & Related papers (2021-05-05T14:48:59Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.