Mitigating Resolution-Drift in Federated Learning: Case of Keypoint Detection
- URL: http://arxiv.org/abs/2507.23461v1
- Date: Thu, 31 Jul 2025 11:38:20 GMT
- Title: Mitigating Resolution-Drift in Federated Learning: Case of Keypoint Detection
- Authors: Taeheon Lim, Joohyung Lee, Kyungjae Lee, Jungchan Cho,
- Abstract summary: The Federated Learning (FL) approach enables effective learning across distributed systems, while preserving user data privacy.<n>This paper identifies and investigates a critical issue termed resolution-drift'', where performance degrades significantly due to resolution variability across clients.<n>We present resolution-adaptive federated learning (RAF), a method that leverages heatmap-based knowledge distillation.
- Score: 8.505738204471136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Federated Learning (FL) approach enables effective learning across distributed systems, while preserving user data privacy. To date, research has primarily focused on addressing statistical heterogeneity and communication efficiency, through which FL has achieved success in classification tasks. However, its application to non-classification tasks, such as human pose estimation, remains underexplored. This paper identifies and investigates a critical issue termed ``resolution-drift,'' where performance degrades significantly due to resolution variability across clients. Unlike class-level heterogeneity, resolution drift highlights the importance of resolution as another axis of not independent or identically distributed (non-IID) data. To address this issue, we present resolution-adaptive federated learning (RAF), a method that leverages heatmap-based knowledge distillation. Through multi-resolution knowledge distillation between higher-resolution outputs (teachers) and lower-resolution outputs (students), our approach enhances resolution robustness without overfitting. Extensive experiments and theoretical analysis demonstrate that RAF not only effectively mitigates resolution drift and achieves significant performance improvements, but also can be integrated seamlessly into existing FL frameworks. Furthermore, although this paper focuses on human pose estimation, our t-SNE analysis reveals distinct characteristics between classification and high-resolution representation tasks, supporting the generalizability of RAF to other tasks that rely on preserving spatial detail.
Related papers
- Small-Scale-Fading-Aware Resource Allocation in Wireless Federated Learning [27.931985523249352]
This paper proposes a small-scale-fading-aware resource allocation strategy using a multi-agent reinforcement learning (MARL) framework.<n>We establish a one-step convergence bound of the FL algorithm and formulate the resource allocation problem as a decentralized partially observable Markov decision process.<n>In our framework, each client serves as an agent that dynamically determines spectrum and power allocations within each coherence time slot.
arXiv Detail & Related papers (2025-05-06T13:41:59Z) - Knowledge Distillation and Enhanced Subdomain Adaptation Using Graph Convolutional Network for Resource-Constrained Bearing Fault Diagnosis [0.0]
We propose a progressive knowledge distillation framework that transfers knowledge from a complex teacher model to a compact and efficient student model.<n>We introduce Enhanced Local Maximum Mean Squared Discrepancy (ELMMSD), which leverages mean and variance statistics in the Reproducing Kernel Hilbert Space (RKHS) and incorporates a priori probability distributions between labels.
arXiv Detail & Related papers (2025-01-13T10:05:47Z) - FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation [58.149902193341816]
We propose textittextbfFourier Neural Processes (FNP) for textitarbitrary-resolution data assimilation in this paper.
Our FNP trained on a fixed resolution can directly handle the assimilation of observations with out-of-distribution resolutions and the observational information reconstruction task without additional fine-tuning.
arXiv Detail & Related papers (2024-06-03T12:24:24Z) - UNIDEAL: Curriculum Knowledge Distillation Federated Learning [17.817181326740698]
Federated Learning (FL) has emerged as a promising approach to enable collaborative learning among multiple clients.
In this paper, we present UNI, a novel FL algorithm specifically designed to tackle the challenges of cross-domain scenarios.
Our results demonstrate that UNI achieves superior performance in terms of both model accuracy and communication efficiency.
arXiv Detail & Related papers (2023-09-16T11:30:29Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
We study the offline reinforcement learning (RL) in the face of unmeasured confounders.
We propose various policy learning methods with the finite-sample suboptimality guarantee of finding the optimal in-class policy.
arXiv Detail & Related papers (2022-09-18T22:03:55Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
In this paper, we exploit Pose Estimation as an auxiliary learning task to assist the VI-ReID task in an end-to-end framework.
By jointly training these two tasks in a mutually beneficial manner, our model learns higher quality modality-shared and ID-related features.
Experimental results on two benchmark VI-ReID datasets show that the proposed method consistently improves state-of-the-art methods by significant margins.
arXiv Detail & Related papers (2022-01-11T09:44:00Z) - Holistic Deep Learning [3.718942345103135]
This paper presents a novel holistic deep learning framework that addresses the challenges of vulnerability to input perturbations, overparametrization, and performance instability.
The proposed framework holistically improves accuracy, robustness, sparsity, and stability over standard deep learning models.
arXiv Detail & Related papers (2021-10-29T14:46:32Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
Training stability is still a lingering concern of generative adversarial networks (GANs)
In this paper, we explore a relation network architecture for the discriminator and design a triplet loss which performs better generalization and stability.
Experiments on benchmark datasets show that the proposed relation discriminator and new loss can provide significant improvement on variable vision tasks.
arXiv Detail & Related papers (2020-02-24T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.