論文の概要: FastPoint: Accelerating 3D Point Cloud Model Inference via Sample Point Distance Prediction
- arxiv url: http://arxiv.org/abs/2507.23480v1
- Date: Thu, 31 Jul 2025 12:02:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.725951
- Title: FastPoint: Accelerating 3D Point Cloud Model Inference via Sample Point Distance Prediction
- Title(参考訳): FastPoint: サンプルポイント距離予測による3Dポイントクラウドモデル推論の高速化
- Authors: Donghyun Lee, Dawoon Jeong, Jae W. Lee, Hongil Yoon,
- Abstract要約: 我々は,3Dポイントクラウド処理のためのソフトウェアベースのアクセラレーション技術であるFastPointを紹介する。
距離曲線を予測することにより、全対距離を網羅的に計算することなく、後続のサンプル点を効率的に同定することができる。
提案手法は,サンプリング品質とモデル性能を保ちながら,最遠点サンプリングと隣接探索操作を大幅に高速化する。
- 参考スコア(独自算出の注目度): 9.409294413882632
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks have revolutionized 3D point cloud processing, yet efficiently handling large and irregular point clouds remains challenging. To tackle this problem, we introduce FastPoint, a novel software-based acceleration technique that leverages the predictable distance trend between sampled points during farthest point sampling. By predicting the distance curve, we can efficiently identify subsequent sample points without exhaustively computing all pairwise distances. Our proposal substantially accelerates farthest point sampling and neighbor search operations while preserving sampling quality and model performance. By integrating FastPoint into state-of-the-art 3D point cloud models, we achieve 2.55x end-to-end speedup on NVIDIA RTX 3090 GPU without sacrificing accuracy.
- Abstract(参考訳): ディープニューラルネットワークは3Dポイントクラウド処理に革命をもたらしたが、大規模で不規則なクラウドを効率的に扱うことは依然として難しい。
この問題に対処するために,最遠点サンプリング時のサンプリング点間の予測可能な距離傾向を利用するソフトウェアベースの高速化手法であるFastPointを導入する。
距離曲線を予測することにより、全対距離を網羅的に計算することなく、後続のサンプル点を効率的に同定することができる。
提案手法は,サンプリング品質とモデル性能を保ちながら,最遠点サンプリングと隣接探索操作を大幅に高速化する。
FastPointを最先端の3Dポイントクラウドモデルに統合することで、精度を犠牲にすることなくNVIDIA RTX 3090 GPUのエンドツーエンドのスピードアップを2.55倍に向上する。
関連論文リスト
- 3D Point Cloud Generation via Autoregressive Up-sampling [60.05226063558296]
我々は3Dポイントクラウド生成のための先駆的な自己回帰生成モデルを導入する。
視覚的自己回帰モデリングにインスパイアされた我々は、ポイントクラウド生成を自己回帰的アップサンプリングプロセスとして概念化する。
PointARUは、3Dポイントの雲を粗いものから細かいものへと徐々に洗練する。
論文 参考訳(メタデータ) (2025-03-11T16:30:45Z) - iPUNet:Iterative Cross Field Guided Point Cloud Upsampling [20.925921503694894]
3Dスキャン装置によって取得される点雲は、しばしば疎く、ノイズが多く、一様ではないため、幾何学的特徴が失われる。
任意の比率で高密度および均一な点を生成する学習ベースポイントアップサンプリング手法iPUNetを提案する。
iPUNetは、ノイズや不均一に分散された入力を処理し、最先端のクラウドサンプリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2023-10-13T13:24:37Z) - GridPull: Towards Scalability in Learning Implicit Representations from
3D Point Clouds [60.27217859189727]
大規模クラウドから暗黙の表現を学習する効率を改善するため,GridPullを提案する。
我々の斬新さは、ニューラルネットワークを使わずにグリッド上に定義された離散距離場の高速な推論にある。
我々は、一様格子を用いて高速グリッド探索を行い、サンプルクエリをローカライズし、木構造内の表面点を整理し、表面への距離の計算を高速化する。
論文 参考訳(メタデータ) (2023-08-25T04:52:52Z) - Hierarchical Adaptive Voxel-guided Sampling for Real-time Applications
in Large-scale Point Clouds [6.094829692829813]
本稿では,線形複雑化と高並列化を実現した階層型適応型ボクセル誘導点サンプリング器を提案する。
提案手法は,100倍以上の速度で,最も強力なFPSと競合する性能を実現する。
我々のサンプルは既存のモデルに簡単に統合でき、最小限の労力でランタイムを20$sim$80%削減できる。
論文 参考訳(メタデータ) (2023-05-23T17:45:49Z) - Grad-PU: Arbitrary-Scale Point Cloud Upsampling via Gradient Descent
with Learned Distance Functions [77.32043242988738]
我々は、任意のアップサンプリングレートをサポートする、正確なポイントクラウドアップサンプリングのための新しいフレームワークを提案する。
提案手法は,まず,所定のアップサンプリング率に応じて低解像度の雲を補間する。
論文 参考訳(メタデータ) (2023-04-24T06:36:35Z) - An Adjustable Farthest Point Sampling Method for Approximately-sorted
Point Cloud Data [13.037325916265639]
サンプリング性能を損なうことなく、FPSの複雑さを積極的に軽減するために、Mによりパラメータ化された調整可能なFPS(AFPS)を提案する。
AFPS法はオリジナルのFPSの22倍から30倍の高速化を実現することができる。
また,距離更新回数を一定数に制限するN法を提案する。
論文 参考訳(メタデータ) (2022-08-18T12:23:26Z) - PiFeNet: Pillar-Feature Network for Real-Time 3D Pedestrian Detection
from Point Cloud [64.12626752721766]
点雲からの歩行者検出に有効なリアルタイム3D検出器であるPiFeNetを提案する。
歩行者を検知する際の3次元物体検出フレームワークが直面する課題として, 柱の特徴の少ない点と, 点群における歩行者の占有面積の小さい点があげられる。
提案手法は,26fps/秒(FPS)で走行しながら,KITTI歩行者BEVと3Dリーダーボードで第1位にランクされ,Nuscenes検出ベンチマークの最先端性能を実現している。
論文 参考訳(メタデータ) (2021-12-31T13:41:37Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
実スキャンされた3Dポイントクラウドはしばしば不完全であり、下流アプリケーションのために完全なポイントクラウドを復元することが重要である。
ほとんどの既存のポイントクラウド補完方法は、トレーニングにチャンファー距離(CD)損失を使用する。
本稿では,点雲完了のためのPDR(Point Diffusion-Refinement)パラダイムを提案する。
論文 参考訳(メタデータ) (2021-12-07T06:59:06Z) - DV-Det: Efficient 3D Point Cloud Object Detection with Dynamic
Voxelization [0.0]
本稿では,効率的な3Dポイント・クラウド・オブジェクト検出のための新しい2段階フレームワークを提案する。
生のクラウドデータを3D空間で直接解析するが、目覚ましい効率と精度を実現する。
我々は,75 FPSでKITTI 3Dオブジェクト検出データセットを,25 FPSの推論速度で良好な精度でOpenデータセット上で強調する。
論文 参考訳(メタデータ) (2021-07-27T10:07:39Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。