Optimised Feature Subset Selection via Simulated Annealing
- URL: http://arxiv.org/abs/2507.23568v1
- Date: Thu, 31 Jul 2025 13:57:38 GMT
- Title: Optimised Feature Subset Selection via Simulated Annealing
- Authors: Fernando Martínez-García, Álvaro Rubio-García, Samuel Fernández-Lorenzo, Juan José García-Ripoll, Diego Porras,
- Abstract summary: We introduce SA-FDR, a novel algorithm for $ell_0$-norm feature selection.<n>We show that SA-FDR consistently selects more compact feature subsets while achieving a high predictive accuracy.<n>As a result, SA-FDR provides a flexible and effective solution for designing interpretable models in high-dimensional settings.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SA-FDR, a novel algorithm for $\ell_0$-norm feature selection that considers this task as a combinatorial optimisation problem and solves it by using simulated annealing to perform a global search over the space of feature subsets. The optimisation is guided by the Fisher discriminant ratio, which we use as a computationally efficient proxy for model quality in classification tasks. Our experiments, conducted on datasets with up to hundreds of thousands of samples and hundreds of features, demonstrate that SA-FDR consistently selects more compact feature subsets while achieving a high predictive accuracy. This ability to recover informative yet minimal sets of features stems from its capacity to capture inter-feature dependencies often missed by greedy optimisation approaches. As a result, SA-FDR provides a flexible and effective solution for designing interpretable models in high-dimensional settings, particularly when model sparsity, interpretability, and performance are crucial.
Related papers
- "FRAME: Forward Recursive Adaptive Model Extraction-A Technique for Advance Feature Selection" [0.0]
This study introduces a novel hybrid approach, the Forward Recursive Adaptive Model Extraction Technique (FRAME)<n>FRAME combines Forward Selection and Recursive Feature Elimination to enhance feature selection across diverse datasets.<n>The results demonstrate that FRAME consistently delivers superior predictive performance based on downstream machine learning evaluation metrics.
arXiv Detail & Related papers (2025-01-21T08:34:10Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
A popular similarity-based feature upsampling pipeline has been proposed, which utilizes a high-resolution feature as guidance.<n>We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.<n>We develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - FAStEN: An Efficient Adaptive Method for Feature Selection and Estimation in High-Dimensional Functional Regressions [7.674715791336311]
We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse function-on-function regression problem.
We show how to extend it to the scalar-on-function framework.
We present an application to brain fMRI data from the AOMIC PIOP1 study.
arXiv Detail & Related papers (2023-03-26T19:41:17Z) - Fine-grained Retrieval Prompt Tuning [149.9071858259279]
Fine-grained Retrieval Prompt Tuning steers a frozen pre-trained model to perform the fine-grained retrieval task from the perspectives of sample prompt and feature adaptation.
Our FRPT with fewer learnable parameters achieves the state-of-the-art performance on three widely-used fine-grained datasets.
arXiv Detail & Related papers (2022-07-29T04:10:04Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - IVFS: Simple and Efficient Feature Selection for High Dimensional
Topology Preservation [33.424663018395684]
We propose a simple and effective feature selection algorithm to enhance sample similarity preservation.
The proposed algorithm is able to well preserve the pairwise distances, as well as topological patterns, of the full data.
arXiv Detail & Related papers (2020-04-02T23:05:00Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
We propose an outlier detection ensemble framework with embedded feature selection (ODEFS)
For each random sub-sampling based learning component, ODEFS unifies feature selection and outlier detection into a pairwise ranking formulation.
We adopt the thresholded self-paced learning to simultaneously optimize feature selection and example selection.
arXiv Detail & Related papers (2020-01-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.