Improving annotator selection in Active Learning using a mood and fatigue-aware Recommender System
- URL: http://arxiv.org/abs/2507.23756v1
- Date: Thu, 31 Jul 2025 17:41:30 GMT
- Title: Improving annotator selection in Active Learning using a mood and fatigue-aware Recommender System
- Authors: Diana Mortagua,
- Abstract summary: This study centers on overcoming the challenge of selecting the best annotators for each query in Active Learning (AL)<n>AL recognizes the challenges related to cost and time when acquiring labeled data, and decreases the number of labeled data needed.<n>Most strategies for query-annotator pairs do not consider internal factors that affect productivity, such as mood, attention, motivation, and fatigue levels.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study centers on overcoming the challenge of selecting the best annotators for each query in Active Learning (AL), with the objective of minimizing misclassifications. AL recognizes the challenges related to cost and time when acquiring labeled data, and decreases the number of labeled data needed. Nevertheless, there is still the necessity to reduce annotation errors, aiming to be as efficient as possible, to achieve the expected accuracy faster. Most strategies for query-annotator pairs do not consider internal factors that affect productivity, such as mood, attention, motivation, and fatigue levels. This work addresses this gap in the existing literature, by not only considering how the internal factors influence annotators (mood and fatigue levels) but also presenting a new query-annotator pair strategy, using a Knowledge-Based Recommendation System (RS). The RS ranks the available annotators, allowing to choose one or more to label the queried instance using their past accuracy values, and their mood and fatigue levels, as well as information about the instance queried. This work bases itself on existing literature on mood and fatigue influence on human performance, simulating annotators in a realistic manner, and predicting their performance with the RS. The results show that considering past accuracy values, as well as mood and fatigue levels reduces the number of annotation errors made by the annotators, and the uncertainty of the model through its training, when compared to not using internal factors. Accuracy and F1-score values were also better in the proposed approach, despite not being as substantial as the aforementioned. The methodologies and findings presented in this study begin to explore the open challenge of human cognitive factors affecting AL.
Related papers
- Leveraging AI Graders for Missing Score Imputation to Achieve Accurate Ability Estimation in Constructed-Response Tests [0.6445605125467574]
Item response theory (IRT) provides a promising solution by enabling the estimation of ability from incomplete score data.<n>The accuracy of ability estimation declines as the proportion of missing scores increases.<n>This study proposes a novel method for imputing missing scores by leveraging automated scoring technologies.
arXiv Detail & Related papers (2025-06-25T04:17:57Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Navigating the Pitfalls of Active Learning Evaluation: A Systematic
Framework for Meaningful Performance Assessment [3.3064235071867856]
Active Learning (AL) aims to reduce the labeling burden by interactively selecting the most informative samples from a pool of unlabeled data.
Some studies have questioned the effectiveness of AL compared to emerging paradigms such as semi-supervised (Semi-SL) and self-supervised learning (Self-SL)
arXiv Detail & Related papers (2023-01-25T15:07:44Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Differentiating Student Feedbacks for Knowledge Tracing [28.669001606806525]
We propose a framework to reweight the contribution of different responses based on their discrimination in training.<n>We also introduce an adaptive predictive score fusion technique to maintain accuracy on less discriminative responses.
arXiv Detail & Related papers (2022-12-16T13:55:07Z) - ReAct: Temporal Action Detection with Relational Queries [84.76646044604055]
This work aims at advancing temporal action detection (TAD) using an encoder-decoder framework with action queries.
We first propose a relational attention mechanism in the decoder, which guides the attention among queries based on their relations.
Lastly, we propose to predict the localization quality of each action query at inference in order to distinguish high-quality queries.
arXiv Detail & Related papers (2022-07-14T17:46:37Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
We propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function.
Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks.
arXiv Detail & Related papers (2022-05-10T15:39:11Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.