論文の概要: Half-Physics: Enabling Kinematic 3D Human Model with Physical Interactions
- arxiv url: http://arxiv.org/abs/2507.23778v1
- Date: Thu, 31 Jul 2025 17:58:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:10.224759
- Title: Half-Physics: Enabling Kinematic 3D Human Model with Physical Interactions
- Title(参考訳): 半理学:物理相互作用を用いた運動学的3次元人体モデルの構築
- Authors: Li Siyao, Yao Feng, Omid Tehari, Chen Change Loy, Michael J. Black,
- Abstract要約: SMPL-Xを周囲との動的物理的相互作用が可能な有形実体に埋め込む新しい手法を提案する。
本手法は,シーンやオブジェクトとの物理的に妥当な相互作用を確保しつつ,固有のSMPL-Xポーズの運動制御を維持する。
広範かつ複雑な訓練を必要とする強化学習法とは異なり、ハーフフィック法は学習自由であり、あらゆる身体形状や運動に一般化する。
- 参考スコア(独自算出の注目度): 88.01918532202716
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While current general-purpose 3D human models (e.g., SMPL-X) efficiently represent accurate human shape and pose, they lacks the ability to physically interact with the environment due to the kinematic nature. As a result, kinematic-based interaction models often suffer from issues such as interpenetration and unrealistic object dynamics. To address this limitation, we introduce a novel approach that embeds SMPL-X into a tangible entity capable of dynamic physical interactions with its surroundings. Specifically, we propose a "half-physics" mechanism that transforms 3D kinematic motion into a physics simulation. Our approach maintains kinematic control over inherent SMPL-X poses while ensuring physically plausible interactions with scenes and objects, effectively eliminating penetration and unrealistic object dynamics. Unlike reinforcement learning-based methods, which demand extensive and complex training, our half-physics method is learning-free and generalizes to any body shape and motion; meanwhile, it operates in real time. Moreover, it preserves the fidelity of the original kinematic motion while seamlessly integrating physical interactions
- Abstract(参考訳): 現在の汎用3Dモデル(例えば、SMPL-X)は、正確な人間の形状とポーズを効率よく表現するが、運動性によって環境と物理的に相互作用する能力は欠如している。
結果として、キネマティックに基づく相互作用モデルは、しばしば相互接続や非現実的なオブジェクトダイナミクスのような問題に悩まされる。
この制限に対処するために,SMPL-Xを周囲との動的物理的相互作用が可能な有形実体に埋め込む新しいアプローチを導入する。
具体的には,3次元運動を物理シミュレーションに変換する「半物理」機構を提案する。
本手法は,シーンやオブジェクトとの物理的に妥当な相互作用を確保しつつ,固有のSMPL-Xポーズの運動制御を維持し,浸透や非現実的なオブジェクトのダイナミクスを効果的に排除する。
広範かつ複雑なトレーニングを必要とする強化学習ベースの手法とは異なり、ハーフフィック法は学習自由で、どんな体形や動きにも一般化します。
さらに、物理的相互作用をシームレスに統合しながら、元の運動の忠実さを保っている。
関連論文リスト
- PhysiInter: Integrating Physical Mapping for High-Fidelity Human Interaction Generation [35.563978243352764]
人間のインタラクション生成パイプライン全体に統合された物理マッピングを導入する。
具体的には、物理に基づくシミュレーション環境での運動模倣は、ターゲットの動きを物理的に有効な空間に投影するために使用される。
実験の結果,人間の運動の質は3%~89%向上した。
論文 参考訳(メタデータ) (2025-06-09T06:04:49Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
エゴガウスアン(EgoGaussian)は、3Dシーンを同時に再構築し、RGBエゴセントリックな入力のみから3Dオブジェクトの動きを動的に追跡する手法である。
動的オブジェクトと背景再構築の品質の両面で,最先端技術と比較して大きな改善が見られた。
論文 参考訳(メタデータ) (2024-06-28T10:39:36Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamerは物理に基づくアプローチで、静的な3Dオブジェクトにインタラクティブなダイナミクスを与える。
本稿では, 弾性物体の多様な例について考察し, ユーザスタディを通じて合成された相互作用の現実性を評価する。
論文 参考訳(メタデータ) (2024-04-19T17:41:05Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
本研究は,単眼映像から身体的に可視な人間の動きを推定する作業に焦点をあてる。
物理を考慮しない既存のアプローチは、しばしば運動人工物と時間的に矛盾した出力を生み出す。
提案手法は,Human3.6Mベンチマークにおける既存の物理法と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-24T18:02:49Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
DiffPhyは、映像から3次元の人間の動きを再現する物理モデルである。
モノクロ映像から物理的に可視な3次元動作を正確に再現できることを実証し,本モデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-05-24T17:58:37Z) - Dynamics-Regulated Kinematic Policy for Egocentric Pose Estimation [23.603254270514224]
本研究では,動力学的モデリング,動的モデリング,シーンオブジェクト情報を密に統合したオブジェクト認識型3Dエゴセントリックポーズ推定手法を提案する。
ウェアラブルカメラ1台を用いて、物理的に証明可能な3Dオブジェクトインタラクションを推定する能力を初めて実証した。
論文 参考訳(メタデータ) (2021-06-10T17:59:50Z) - Real-time Deep Dynamic Characters [95.5592405831368]
本研究では,高度にリアルな形状,動き,ダイナミックな外観を示す3次元人物モデルを提案する。
我々は,新しいグラフ畳み込みネットワークアーキテクチャを用いて,身体と衣服の運動依存的変形学習を実現する。
本モデルでは, 運動依存的表面変形, 物理的に妥当な動的衣服変形, および映像現実的表面テクスチャを, 従来よりも細部まで高レベルに生成することを示す。
論文 参考訳(メタデータ) (2021-05-04T23:28:55Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。