論文の概要: Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video
- arxiv url: http://arxiv.org/abs/2205.12292v1
- Date: Tue, 24 May 2022 18:02:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-26 14:34:35.853266
- Title: Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video
- Title(参考訳): 物理に基づく単眼映像からの3次元ポーズ再構成のための軌道最適化
- Authors: Erik G\"artner, Mykhaylo Andriluka, Hongyi Xu, Cristian Sminchisescu
- Abstract要約: 本研究は,単眼映像から身体的に可視な人間の動きを推定する作業に焦点をあてる。
物理を考慮しない既存のアプローチは、しばしば運動人工物と時間的に矛盾した出力を生み出す。
提案手法は,Human3.6Mベンチマークにおける既存の物理法と競合する結果が得られることを示す。
- 参考スコア(独自算出の注目度): 31.96672354594643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We focus on the task of estimating a physically plausible articulated human
motion from monocular video. Existing approaches that do not consider physics
often produce temporally inconsistent output with motion artifacts, while
state-of-the-art physics-based approaches have either been shown to work only
in controlled laboratory conditions or consider simplified body-ground contact
limited to feet. This paper explores how these shortcomings can be addressed by
directly incorporating a fully-featured physics engine into the pose estimation
process. Given an uncontrolled, real-world scene as input, our approach
estimates the ground-plane location and the dimensions of the physical body
model. It then recovers the physical motion by performing trajectory
optimization. The advantage of our formulation is that it readily generalizes
to a variety of scenes that might have diverse ground properties and supports
any form of self-contact and contact between the articulated body and scene
geometry. We show that our approach achieves competitive results with respect
to existing physics-based methods on the Human3.6M benchmark, while being
directly applicable without re-training to more complex dynamic motions from
the AIST benchmark and to uncontrolled internet videos.
- Abstract(参考訳): 本研究は,単眼映像から身体的に可視な人間の動きを推定する作業に焦点をあてる。
物理を考慮しない既存のアプローチは、しばしば運動人工物と時間的に矛盾した出力を生み出すが、最先端の物理学に基づくアプローチは、制御された実験条件でのみ機能するか、または足に限られる簡易な地上接触を考えることが示されている。
本稿では,全機能物理エンジンをポーズ推定プロセスに組み込むことにより,これらの欠点を解決する方法について検討する。
入力として制御されていない実世界のシーンを仮定し,地上面の位置と身体モデルの寸法を推定する。
その後、軌道最適化により物理運動を回復する。
我々の定式化の利点は、様々な地上特性を持つ様々なシーンに容易に一般化し、任意の形態の自己接触と関節体とシーン幾何学の間の接触をサポートすることである。
提案手法は,AISTベンチマークや制御不能なインターネットビデオから,より複雑な動的動作に再トレーニングすることなく,Human3.6Mベンチマーク上の既存の物理法に対して,直接適用可能であることを示す。
関連論文リスト
- Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos [6.093379844890164]
オンライン環境での運動学観測に物理モデルを選択的に組み込む新しい手法を提案する。
リカレントニューラルネットワークを導入し、キネマティックス入力とシミュレートされた動作を熱心にバランスするカルマンフィルタを実現する。
提案手法は,物理に基づく人間のポーズ推定作業に優れ,予測力学の物理的妥当性を示す。
論文 参考訳(メタデータ) (2024-10-10T10:24:59Z) - MultiPhys: Multi-Person Physics-aware 3D Motion Estimation [28.91813849219037]
モノクロビデオから多人数動作を復元する手法であるMultiPhysを紹介する。
私たちの焦点は、様々なエンゲージメントの度合いで、ペアの個人間のコヒーレントな空間配置をキャプチャすることにあります。
本研究では,運動量に基づく運動を物理シミュレーターに自動回帰的に供給するパイプラインを考案する。
論文 参考訳(メタデータ) (2024-04-18T08:29:29Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - D&D: Learning Human Dynamics from Dynamic Camera [55.60512353465175]
本稿では、物理の法則を活かしたD&D(Learning Human Dynamics from Dynamic Camera)を紹介する。
私たちのアプローチは完全にニューラルネットワークで、物理エンジンのオフライン最適化やシミュレーションなしで動作します。
論文 参考訳(メタデータ) (2022-09-19T06:51:02Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
DiffPhyは、映像から3次元の人間の動きを再現する物理モデルである。
モノクロ映像から物理的に可視な3次元動作を正確に再現できることを実証し,本モデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-05-24T17:58:37Z) - Neural MoCon: Neural Motion Control for Physically Plausible Human
Motion Capture [12.631678059354593]
我々は、高精度で微分不可能な物理シミュレータを利用して、モーションキャプチャーに動的制約を組み込む。
我々のキーイデアは、実際の物理的な監督を利用して、サンプリングベースのモーションコントロールの前にターゲットのポーズ分布をトレーニングすることです。
その結果, 複雑な地形相互作用, 人体形状の変化, 多様な行動を伴う身体的可視な人体運動が得られた。
論文 参考訳(メタデータ) (2022-03-26T12:48:41Z) - Learning Local Recurrent Models for Human Mesh Recovery [50.85467243778406]
本稿では,人間のメッシュを標準的な骨格モデルに従って複数の局所的に分割するビデオメッシュ復元手法を提案する。
次に、各局所部分の力学を別個のリカレントモデルでモデル化し、各モデルは、人体の既知の運動構造に基づいて適切に条件付けする。
これにより、構造的インフォームドな局所的再帰学習アーキテクチャが実現され、アノテーションを使ってエンドツーエンドでトレーニングすることができる。
論文 参考訳(メタデータ) (2021-07-27T14:30:33Z) - PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time [89.68248627276955]
シングルカラーカメラからのマーカレス3Dモーションキャプチャは、大きな進歩を遂げた。
しかし、これは非常に困難な問題であり、深刻な問題である。
我々はPhysCapについて紹介する。PhysCapは物理的に可塑性でリアルタイムでマーカーのない人間の3Dモーションキャプチャのための最初のアルゴリズムである。
論文 参考訳(メタデータ) (2020-08-20T10:46:32Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。