A Survey on Code Generation with LLM-based Agents
- URL: http://arxiv.org/abs/2508.00083v1
- Date: Thu, 31 Jul 2025 18:17:36 GMT
- Title: A Survey on Code Generation with LLM-based Agents
- Authors: Yihong Dong, Xue Jiang, Jiaru Qian, Tian Wang, Kechi Zhang, Zhi Jin, Ge Li,
- Abstract summary: Code generation agents powered by large language models (LLMs) are revolutionizing the software development paradigm.<n>LLMs are characterized by three core features.<n>This paper presents a systematic survey of the field of LLM-based code generation agents.
- Score: 33.44509586789614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Code generation agents powered by large language models (LLMs) are revolutionizing the software development paradigm. Distinct from previous code generation techniques, code generation agents are characterized by three core features. 1) Autonomy: the ability to independently manage the entire workflow, from task decomposition to coding and debugging. 2) Expanded task scope: capabilities that extend beyond generating code snippets to encompass the full software development lifecycle (SDLC). 3) Enhancement of engineering practicality: a shift in research emphasis from algorithmic innovation toward practical engineering challenges, such as system reliability, process management, and tool integration. This domain has recently witnessed rapid development and an explosion in research, demonstrating significant application potential. This paper presents a systematic survey of the field of LLM-based code generation agents. We trace the technology's developmental trajectory from its inception and systematically categorize its core techniques, including both single-agent and multi-agent architectures. Furthermore, this survey details the applications of LLM-based agents across the full SDLC, summarizes mainstream evaluation benchmarks and metrics, and catalogs representative tools. Finally, by analyzing the primary challenges, we identify and propose several foundational, long-term research directions for the future work of the field.
Related papers
- Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) agents are designed to tackle complex, multi-turn informational research tasks.<n>In this paper, we conduct a detailed analysis of the foundational technologies and architectural components that constitute DR agents.
arXiv Detail & Related papers (2025-06-22T16:52:48Z) - How Does LLM Reasoning Work for Code? A Survey and a Call to Action [15.390359698398283]
Large language models (LLMs) have extended into the domain of code, facilitating complex tasks such as code generation, translation, summarization, and repair.<n>Their utility for real-world deployment in-the-wild has only recently been studied, particularly on software engineering (SWE) tasks such as GitHub issue resolution.<n>In this study, we examine the code reasoning techniques that underlie the ability to perform such tasks, and examine the paradigms used to drive their performance.
arXiv Detail & Related papers (2025-06-16T19:18:09Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - Large Language Models (LLMs) for Source Code Analysis: applications, models and datasets [3.8740749765622167]
Large language models (LLMs) and transformer-based architectures are increasingly utilized for source code analysis.<n>This paper explores the role of LLMs for different code analysis tasks, focusing on three key aspects.
arXiv Detail & Related papers (2025-03-21T19:29:50Z) - MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing large language models on AI research tasks.<n>This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents.<n>We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro.
arXiv Detail & Related papers (2025-02-20T12:28:23Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
Cross-modal reasoning (CMR) is increasingly recognized as a crucial capability in the progression toward more sophisticated artificial intelligence systems.
The recent trend of deploying Large Language Models (LLMs) to tackle CMR tasks has marked a new mainstream of approaches for enhancing their effectiveness.
This survey offers a nuanced exposition of current methodologies applied in CMR using LLMs, classifying these into a detailed three-tiered taxonomy.
arXiv Detail & Related papers (2024-09-19T02:51:54Z) - LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Integration of Multi Active/Passive Core-Agents [0.0]
We propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF)
Our framework distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent.
We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities.
arXiv Detail & Related papers (2024-09-17T17:54:17Z) - Agents in Software Engineering: Survey, Landscape, and Vision [46.021478509599895]
Large Language Models (LLMs) have achieved remarkable success and have been widely used in various downstream tasks.
We find that many studies combining LLMs with software engineering (SE) have employed the concept of agents either explicitly or implicitly.
We present a framework of LLM-based agents in SE which includes three key modules: perception, memory, and action.
arXiv Detail & Related papers (2024-09-13T17:55:58Z) - A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond [84.95530356322621]
This survey presents a systematic review of the advancements in code intelligence.<n>It covers over 50 representative models and their variants, more than 20 categories of tasks, and an extensive coverage of over 680 related works.<n>Building on our examination of the developmental trajectories, we further investigate the emerging synergies between code intelligence and broader machine intelligence.
arXiv Detail & Related papers (2024-03-21T08:54:56Z) - CodePori: Large-Scale System for Autonomous Software Development Using Multi-Agent Technology [4.2990995991059275]
Large Language Models (LLMs) and Generative Pre-trained Transformers (GPTs) have transformed the field of Software Engineering.
We introduce CodePori, a novel system designed to automate code generation for large and complex software projects.
Results: CodePori is able to generate running code for large-scale projects, aligned with the typical software development process.
arXiv Detail & Related papers (2024-02-02T13:42:50Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.