How Does LLM Reasoning Work for Code? A Survey and a Call to Action
- URL: http://arxiv.org/abs/2506.13932v1
- Date: Mon, 16 Jun 2025 19:18:09 GMT
- Title: How Does LLM Reasoning Work for Code? A Survey and a Call to Action
- Authors: Ira Ceka, Saurabh Pujar, Irene Manotas, Gail Kaiser, Baishakhi Ray, Shyam Ramji,
- Abstract summary: Large language models (LLMs) have extended into the domain of code, facilitating complex tasks such as code generation, translation, summarization, and repair.<n>Their utility for real-world deployment in-the-wild has only recently been studied, particularly on software engineering (SWE) tasks such as GitHub issue resolution.<n>In this study, we examine the code reasoning techniques that underlie the ability to perform such tasks, and examine the paradigms used to drive their performance.
- Score: 15.390359698398283
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of large language models (LLMs) has led to dramatic improvements across a wide range of natural language tasks. These advancements have extended into the domain of code, facilitating complex tasks such as code generation, translation, summarization, and repair. However, their utility for real-world deployment in-the-wild has only recently been studied, particularly on software engineering (SWE) tasks such as GitHub issue resolution. In this study, we examine the code reasoning techniques that underlie the ability to perform such tasks, and examine the paradigms used to drive their performance. Our contributions in this paper are: (1) the first dedicated survey on code reasoning for code tasks, highlighting overarching strategies, hybrid and agentic approaches; (2) a taxonomy of various techniques used to drive code reasoning; (3) a comprehensive overview of performance on common benchmarks and a showcase of new, under-explored benchmarks with high potential in SWE; (4) an exploration on how core properties of code can be used to explain different reasoning techniques; and (5) gaps and potentially under-explored areas for future research.
Related papers
- A Survey on Code Generation with LLM-based Agents [33.44509586789614]
Code generation agents powered by large language models (LLMs) are revolutionizing the software development paradigm.<n>LLMs are characterized by three core features.<n>This paper presents a systematic survey of the field of LLM-based code generation agents.
arXiv Detail & Related papers (2025-07-31T18:17:36Z) - MERA Code: A Unified Framework for Evaluating Code Generation Across Tasks [56.34018316319873]
We propose MERA Code, a benchmark for evaluating code for the latest code generation LLMs in Russian.<n>This benchmark includes 11 evaluation tasks that span 8 programming languages.<n>We evaluate open LLMs and frontier API models, analyzing their limitations in terms of practical coding tasks in non-English languages.
arXiv Detail & Related papers (2025-07-16T14:31:33Z) - Augmenting the Generality and Performance of Large Language Models for Software Engineering [0.0]
Large Language Models (LLMs) are revolutionizing software engineering (SE) with special emphasis on code generation and analysis.<n>This research aims to augment the generality and performance of LLMs for SE by advancing the understanding of how LLMs with different characteristics perform on various non-code tasks.
arXiv Detail & Related papers (2025-06-13T08:00:38Z) - Code to Think, Think to Code: A Survey on Code-Enhanced Reasoning and Reasoning-Driven Code Intelligence in LLMs [53.00384299879513]
In large language models (LLMs), code and reasoning reinforce each other.<n>Code provides verifiable execution paths, enforces logical decomposition, and enables runtime validation.<n>We identify key challenges and propose future research directions to strengthen this synergy.
arXiv Detail & Related papers (2025-02-26T18:55:42Z) - Language Models for Code Optimization: Survey, Challenges and Future Directions [7.928856221466083]
Language models (LMs) built upon deep neural networks (DNNs) have recently demonstrated breakthrough effectiveness in software engineering tasks.<n>This study aims to provide actionable insights and references for both researchers and practitioners in this rapidly evolving field.
arXiv Detail & Related papers (2025-01-02T14:20:36Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks.
This survey aims to bridge the gap between academia and practical development by providing a comprehensive and up-to-date literature review.
arXiv Detail & Related papers (2024-06-01T17:48:15Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
We propose a benchmark to evaluate the effectiveness of Large Language Models (LLMs) in binary code understanding.
Our evaluations reveal that existing LLMs can understand binary code to a certain extent, thereby improving the efficiency of binary code analysis.
arXiv Detail & Related papers (2024-04-15T14:44:08Z) - Ocassionally Secure: A Comparative Analysis of Code Generation
Assistants [8.573156248244695]
This paper focuses on identifying and understanding the conditions and contexts in which LLMs can be effectively and safely deployed.
We conducted a comparative analysis of four advanced LLMs--GPT-3.5 and GPT-4 using ChatGPT and Bard and Gemini from Google--using 9 separate tasks to assess each model's code generation capabilities.
We collected 61 code outputs and analyzed them across several aspects: functionality, security, performance, complexity, and reliability.
arXiv Detail & Related papers (2024-02-01T15:49:47Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.