Punching Bag vs. Punching Person: Motion Transferability in Videos
- URL: http://arxiv.org/abs/2508.00085v1
- Date: Thu, 31 Jul 2025 18:19:20 GMT
- Title: Punching Bag vs. Punching Person: Motion Transferability in Videos
- Authors: Raiyaan Abdullah, Jared Claypoole, Michael Cogswell, Ajay Divakaran, Yogesh Rawat,
- Abstract summary: Action recognition models demonstrate strong generalization, but can they effectively transfer high-level motion concepts across diverse contexts?<n>We introduce a motion transferability framework with three datasets: Syn-TA, a synthetic dataset with 3D object motions; Kinetics400-TA; and Something-Something-v2-TA, both adapted from natural video datasets.<n>We evaluate 13 state-of-the-art models on these benchmarks and observe a significant drop in performance when recognizing high-level actions in novel contexts.
- Score: 5.302871580118083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Action recognition models demonstrate strong generalization, but can they effectively transfer high-level motion concepts across diverse contexts, even within similar distributions? For example, can a model recognize the broad action "punching" when presented with an unseen variation such as "punching person"? To explore this, we introduce a motion transferability framework with three datasets: (1) Syn-TA, a synthetic dataset with 3D object motions; (2) Kinetics400-TA; and (3) Something-Something-v2-TA, both adapted from natural video datasets. We evaluate 13 state-of-the-art models on these benchmarks and observe a significant drop in performance when recognizing high-level actions in novel contexts. Our analysis reveals: 1) Multimodal models struggle more with fine-grained unknown actions than with coarse ones; 2) The bias-free Syn-TA proves as challenging as real-world datasets, with models showing greater performance drops in controlled settings; 3) Larger models improve transferability when spatial cues dominate but struggle with intensive temporal reasoning, while reliance on object and background cues hinders generalization. We further explore how disentangling coarse and fine motions can improve recognition in temporally challenging datasets. We believe this study establishes a crucial benchmark for assessing motion transferability in action recognition. Datasets and relevant code: https://github.com/raiyaan-abdullah/Motion-Transfer.
Related papers
- Towards Robust and Controllable Text-to-Motion via Masked Autoregressive Diffusion [33.9786226622757]
We propose a robust motion generation framework MoMADiff to generate 3D human motion from text descriptions.<n>Our model supports flexible user-provided specification, enabling precise control over both spatial and temporal aspects of motion synthesis.<n>Our method consistently outperforms state-of-the-art models in motion quality, instruction fidelity, and adherence.
arXiv Detail & Related papers (2025-05-16T09:06:15Z) - Mocap-2-to-3: Multi-view Lifting for Monocular Motion Recovery with 2D Pretraining [49.223455189395025]
Mocap-2-to-3 is a novel framework that performs multi-view lifting from monocular input.<n>To leverage abundant 2D data, we decompose complex 3D motion into multi-view syntheses.<n>Our method surpasses state-of-the-art approaches in both camera-space motion realism and world-grounded human positioning.
arXiv Detail & Related papers (2025-03-05T06:32:49Z) - GEAL: Generalizable 3D Affordance Learning with Cross-Modal Consistency [50.11520458252128]
Existing 3D affordance learning methods struggle with generalization and robustness due to limited annotated data.<n>We propose GEAL, a novel framework designed to enhance the generalization and robustness of 3D affordance learning by leveraging large-scale pre-trained 2D models.<n>GEAL consistently outperforms existing methods across seen and novel object categories, as well as corrupted data.
arXiv Detail & Related papers (2024-12-12T17:59:03Z) - SimVS: Simulating World Inconsistencies for Robust View Synthesis [102.83898965828621]
We present an approach for leveraging generative video models to simulate the inconsistencies in the world that can occur during capture.<n>We demonstrate that our world-simulation strategy significantly outperforms traditional augmentation methods in handling real-world scene variations.
arXiv Detail & Related papers (2024-12-10T17:35:12Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Realistic Human Motion Generation with Cross-Diffusion Models [30.854425772128568]
Cross Human Motion Diffusion Model (CrossDiff)
Method integrates 3D and 2D information using a shared transformer network within the training of the diffusion model.
CrossDiff effectively combines the strengths of both representations to generate more realistic motion sequences.
arXiv Detail & Related papers (2023-12-18T07:44:40Z) - Realistic Full-Body Tracking from Sparse Observations via Joint-Level
Modeling [13.284947022380404]
We propose a two-stage framework that can obtain accurate and smooth full-body motions with three tracking signals of head and hands only.
Our framework explicitly models the joint-level features in the first stage and utilizes them astemporal tokens for alternating spatial and temporal transformer blocks to capture joint-level correlations in the second stage.
With extensive experiments on the AMASS motion dataset and real-captured data, we show our proposed method can achieve more accurate and smooth motion compared to existing approaches.
arXiv Detail & Related papers (2023-08-17T08:27:55Z) - ReMoDiffuse: Retrieval-Augmented Motion Diffusion Model [33.64263969970544]
3D human motion generation is crucial for creative industry.
Recent advances rely on generative models with domain knowledge for text-driven motion generation.
We propose ReMoDiffuse, a diffusion-model-based motion generation framework.
arXiv Detail & Related papers (2023-04-03T16:29:00Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
We present MoDi, an unconditional generative model that synthesizes diverse motions.
Our model is trained in a completely unsupervised setting from a diverse, unstructured and unlabeled motion dataset.
We show that despite the lack of any structure in the dataset, the latent space can be semantically clustered.
arXiv Detail & Related papers (2022-06-16T09:06:25Z) - Synthetic Data Are as Good as the Real for Association Knowledge
Learning in Multi-object Tracking [19.772968520292345]
In this paper, we study whether 3D synthetic data can replace real-world videos for association training.
Specifically, we introduce a large-scale synthetic data engine named MOTX, where the motion characteristics of cameras and objects are manually configured to be similar to those in real-world datasets.
We show that compared with real data, association knowledge obtained from synthetic data can achieve very similar performance on real-world test sets without domain adaption techniques.
arXiv Detail & Related papers (2021-06-30T14:46:36Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.