論文の概要: Testing the Untestable? An Empirical Study on the Testing Process of LLM-Powered Software Systems
- arxiv url: http://arxiv.org/abs/2508.00198v2
- Date: Mon, 04 Aug 2025 01:59:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 14:07:57.813576
- Title: Testing the Untestable? An Empirical Study on the Testing Process of LLM-Powered Software Systems
- Title(参考訳): テスト不可能性? LLM搭載ソフトウェアシステムのテストプロセスに関する実証的研究
- Authors: Cleyton Magalhaes, Italo Santos, Brody Stuart-Verner, Ronnie de Souza Santos,
- Abstract要約: 本研究では,実世界のアプリケーション開発において,大規模言語モデルがどのようにテストされるかを検討する。
ケーススタディは、LLMを利用したアプリケーションを大学コースの一部として構築・展開した学生によって書かれた99の個人レポートを用いて実施された。
結果: LLMを利用したシステムをテストするには, 従来の検証手法に適応し, ソースレベルの推論と行動認識評価をブレンドする必要がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Software systems powered by large language models are becoming a routine part of everyday technologies, supporting applications across a wide range of domains. In software engineering, many studies have focused on how LLMs support tasks such as code generation, debugging, and documentation. However, there has been limited focus on how full systems that integrate LLMs are tested during development. Aims: This study explores how LLM-powered systems are tested in the context of real-world application development. Method: We conducted an exploratory case study using 99 individual reports written by students who built and deployed LLM-powered applications as part of a university course. Each report was independently analyzed using thematic analysis, supported by a structured coding process. Results: Testing strategies combined manual and automated methods to evaluate both system logic and model behavior. Common practices included exploratory testing, unit testing, and prompt iteration. Reported challenges included integration failures, unpredictable outputs, prompt sensitivity, hallucinations, and uncertainty about correctness. Conclusions: Testing LLM-powered systems required adaptations to traditional verification methods, blending source-level reasoning with behavior-aware evaluations. These findings provide evidence on the practical context of testing generative components in software systems.
- Abstract(参考訳): 背景: 大規模言語モデルを利用したソフトウェアシステムは、さまざまな領域にわたるアプリケーションをサポートする、日々のテクノロジーの日常的な部分になりつつある。
ソフトウェア工学では、LLMがコード生成、デバッグ、ドキュメントなどのタスクをどのようにサポートするかに多くの研究が焦点を当てている。
しかし、LLMを統合するシステムが開発中にどのようにテストされるかは限定的に焦点が当てられている。
Aims: この研究は、LLMを使ったシステムが現実世界のアプリケーション開発の文脈でどのようにテストされているかを調査します。
方法: LLMを応用したアプリケーションを開発した学生が作成した99件の個人報告を用いて,本研究の事例調査を行った。
各レポートは、構造化されたコーディングプロセスによって支援されたテーマ解析を用いて独立に解析された。
結果: テスト戦略は、システムロジックとモデル動作の両方を評価するために、手動と自動のメソッドを組み合わせています。
一般的なプラクティスとしては、探索テスト、ユニットテスト、迅速なイテレーションなどがある。
報告された課題には、統合障害、予測不可能なアウトプット、迅速な感度、幻覚、正確性に関する不確実性などがあった。
結論: LLMを利用したシステムをテストするには、従来の検証手法への適応が必要であり、ソースレベルの推論と行動認識評価をブレンドする必要があった。
これらの知見は、ソフトウェアシステムにおける生成コンポーネントのテストの実践的文脈に関する証拠となる。
関連論文リスト
- Discrete Tokenization for Multimodal LLMs: A Comprehensive Survey [69.45421620616486]
本研究は、大規模言語モデル(LLM)用に設計された離散トークン化手法の最初の構造的分類と解析である。
古典的および近代的なパラダイムにまたがる8つの代表的なVQ変種を分類し、アルゴリズムの原理を分析し、力学を訓練し、LLMパイプラインとの統合に挑戦する。
コードブックの崩壊、不安定な勾配推定、モダリティ固有の符号化制約など、重要な課題を特定する。
論文 参考訳(メタデータ) (2025-07-21T10:52:14Z) - OpenUnlearning: Accelerating LLM Unlearning via Unified Benchmarking of Methods and Metrics [101.78963920333342]
我々は,大規模言語モデル(LLM)のアンラーニング手法とメトリクスをベンチマークするための標準フレームワークであるOpenUnlearningを紹介する。
OpenUnlearningは、9つのアンラーニングアルゴリズムと16のさまざまな評価を3つの主要なベンチマークで統合する。
また、多様なアンラーニング手法をベンチマークし、広範囲な評価スイートとの比較分析を行う。
論文 参考訳(メタデータ) (2025-06-14T20:16:37Z) - Evaluating Large Language Models for Real-World Engineering Tasks [75.97299249823972]
本稿では,実運用指向のエンジニアリングシナリオから得られた100以上の質問をキュレートしたデータベースを提案する。
このデータセットを用いて、4つの最先端の大規模言語モデル(LLM)を評価する。
以上の結果から,LLMは時間的および構造的推論において強みを示すが,抽象的推論や形式的モデリング,文脈に敏感な工学的論理にはかなり苦労することがわかった。
論文 参考訳(メタデータ) (2025-05-12T14:05:23Z) - Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
大規模言語モデル(LLM)は、様々な領域で研究の焦点となっている。
本稿では,12個のオープンソースLCMのログレベル提案における性能に及ぼす特性と学習パラダイムの影響について検討する。
論文 参考訳(メタデータ) (2024-10-11T03:52:17Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化は機械学習アプリケーションにおいて重要な要素である。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、11タスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も効果的なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - A Software Engineering Perspective on Testing Large Language Models: Research, Practice, Tools and Benchmarks [2.8061460833143346]
大規模言語モデル(LLM)は、スタンドアロンツールとしても、現在および将来のソフトウェアシステムのコンポーネントとしても、急速に普及しています。
LLMを2030年のハイテイクシステムや安全クリティカルシステムで使用するためには、厳格なテストを実施する必要がある。
論文 参考訳(メタデータ) (2024-06-12T13:45:45Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - RITFIS: Robust input testing framework for LLMs-based intelligent
software [6.439196068684973]
RITFISは、自然言語入力に対するインテリジェントソフトウェアの堅牢性を評価するために設計された最初のフレームワークである。
RITFISは17の自動テスト手法を採用しており、元々はディープニューラルネットワーク(DNN)ベースのインテリジェントソフトウェア用に設計された。
LLMベースの知的ソフトウェア評価におけるRITFISの有効性を実証的検証により示す。
論文 参考訳(メタデータ) (2024-02-21T04:00:54Z) - A Case Study on Test Case Construction with Large Language Models:
Unveiling Practical Insights and Challenges [2.7029792239733914]
本稿では,ソフトウェア工学の文脈におけるテストケース構築における大規模言語モデルの適用について検討する。
定性分析と定量分析の混合により, LLMが試験ケースの包括性, 精度, 効率に与える影響を評価する。
論文 参考訳(メタデータ) (2023-12-19T20:59:02Z) - Are We Testing or Being Tested? Exploring the Practical Applications of
Large Language Models in Software Testing [0.0]
LLM(Large Language Model)は、コヒーレントなコンテンツを生成する最先端の人工知能モデルである。
LLMは、ソフトウェアテストを含むソフトウェア開発において重要な役割を担います。
本研究では,産業環境でのソフトウェアテストにおけるLCMの実用化について検討する。
論文 参考訳(メタデータ) (2023-12-08T06:30:37Z) - The Integration of Machine Learning into Automated Test Generation: A
Systematic Mapping Study [15.016047591601094]
我々は、新しい研究、テストプラクティス、研究者の目標、適用されたML技術、評価、課題を特徴づける。
MLはシステム、GUI、ユニット、パフォーマンス、テストのための入力を生成したり、既存の生成メソッドのパフォーマンスを改善したりする。
論文 参考訳(メタデータ) (2022-06-21T09:26:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。