論文の概要: Are We Testing or Being Tested? Exploring the Practical Applications of
Large Language Models in Software Testing
- arxiv url: http://arxiv.org/abs/2312.04860v1
- Date: Fri, 8 Dec 2023 06:30:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-11 15:58:56.674330
- Title: Are We Testing or Being Tested? Exploring the Practical Applications of
Large Language Models in Software Testing
- Title(参考訳): テスト中か、テスト中か?
ソフトウェアテストにおける大規模言語モデルの実践的応用を探る
- Authors: Robson Santos, Italo Santos, Cleyton Magalhaes, Ronnie de Souza Santos
- Abstract要約: LLM(Large Language Model)は、コヒーレントなコンテンツを生成する最先端の人工知能モデルである。
LLMは、ソフトウェアテストを含むソフトウェア開発において重要な役割を担います。
本研究では,産業環境でのソフトウェアテストにおけるLCMの実用化について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A Large Language Model (LLM) represents a cutting-edge artificial
intelligence model that generates coherent content, including grammatically
precise sentences, human-like paragraphs, and syntactically accurate code
snippets. LLMs can play a pivotal role in software development, including
software testing. LLMs go beyond traditional roles such as requirement analysis
and documentation and can support test case generation, making them valuable
tools that significantly enhance testing practices within the field. Hence, we
explore the practical application of LLMs in software testing within an
industrial setting, focusing on their current use by professional testers. In
this context, rather than relying on existing data, we conducted a
cross-sectional survey and collected data within real working contexts,
specifically, engaging with practitioners in industrial settings. We applied
quantitative and qualitative techniques to analyze and synthesize our collected
data. Our findings demonstrate that LLMs effectively enhance testing documents
and significantly assist testing professionals in programming tasks like
debugging and test case automation. LLMs can support individuals engaged in
manual testing who need to code. However, it is crucial to emphasize that, at
this early stage, software testing professionals should use LLMs with caution
while well-defined methods and guidelines are being built for the secure
adoption of these tools.
- Abstract(参考訳): LLM(Large Language Model)は、文法的に正確な文、人間に似た段落、構文的に正確なコードスニペットを含むコヒーレントなコンテンツを生成する最先端の人工知能モデルである。
LLMは、ソフトウェアテストを含むソフトウェア開発において重要な役割を担います。
llmは要件分析やドキュメントといった従来の役割を越えて,テストケース生成をサポートすることが可能です。
そこで本研究では,産業現場におけるソフトウェアテストにおけるllmの実践的応用について検討する。
このような状況下では,既存のデータに頼るのではなく,横断的な調査を実施し,実作業環境,特に産業現場における実践者との関わりに関するデータ収集を行った。
収集したデータを分析し,分析するために定量的,定性的手法を適用した。
その結果、llmはテスト文書を効果的に強化し、デバッグやテストケース自動化のようなプログラミングタスクのプロフェッショナルを著しく支援できることがわかりました。
LLMは、コーディングが必要な手動テストに従事する個人をサポートすることができる。
しかしながら、この初期段階において、ソフトウェアテスティングの専門家は、これらのツールを安全に採用するために、明確に定義されたメソッドやガイドラインが構築されている間、慎重にLSMを使用するべきであることを強調することが重要です。
関連論文リスト
- Studying and Benchmarking Large Language Models For Log Level Suggestion [49.176736212364496]
大規模言語モデル(LLM)は、様々な領域で研究の焦点となっている。
本稿では,12個のオープンソースLCMのログレベル提案における性能に及ぼす特性と学習パラダイムの影響について検討する。
論文 参考訳(メタデータ) (2024-10-11T03:52:17Z) - Learning to Ask: When LLMs Meet Unclear Instruction [49.256630152684764]
大きな言語モデル(LLM)は、言語スキルだけでは達成不可能なタスクに対処するための外部ツールを活用することができる。
我々は、不完全な命令下でのLLMツールの使用性能を評価し、エラーパターンを分析し、Noisy ToolBenchと呼ばれる挑戦的なツール使用ベンチマークを構築した。
Ask-when-Needed (AwN) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-31T23:06:12Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
データサイエンスタスクにコードインタプリタを利用するLLMの能力を総合的に評価する,CIBenchという対話型評価フレームワークを提案する。
評価データセットは,LLM-人的協調手法を用いて構築され,連続的かつ対話的なIPythonセッションを活用することによって,実際のワークフローをシミュレートする。
コードインタプリタの利用において, CIBench 上で 24 個の LLM の能力を解析し, 将来の LLM に対する貴重な洞察を提供するため, 広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2024-07-15T07:43:55Z) - Large-scale, Independent and Comprehensive study of the power of LLMs for test case generation [11.056044348209483]
クラスやメソッドなどのコードモジュールのバグを特定するのに不可欠なユニットテストは、時間的制約のため、開発者によって無視されることが多い。
GPTやMistralのようなLarge Language Models (LLM)は、テスト生成を含むソフトウェア工学における約束を示す。
論文 参考訳(メタデータ) (2024-06-28T20:38:41Z) - A Software Engineering Perspective on Testing Large Language Models: Research, Practice, Tools and Benchmarks [2.8061460833143346]
大規模言語モデル(LLM)は、スタンドアロンツールとしても、現在および将来のソフトウェアシステムのコンポーネントとしても、急速に普及しています。
LLMを2030年のハイテイクシステムや安全クリティカルシステムで使用するためには、厳格なテストを実施する必要がある。
論文 参考訳(メタデータ) (2024-06-12T13:45:45Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - LLM for Test Script Generation and Migration: Challenges, Capabilities,
and Opportunities [8.504639288314063]
テストスクリプト生成はソフトウェアテストの重要なコンポーネントであり、反復的なテストタスクの効率的かつ信頼性の高い自動化を可能にする。
既存の世代のアプローチは、さまざまなデバイス、プラットフォーム、アプリケーション間でテストスクリプトを正確にキャプチャし、再現することの難しさなど、しばしば制限に直面する。
本稿では,モバイルアプリケーションテストスクリプト生成分野における大規模言語モデル(LLM)の適用について検討する。
論文 参考訳(メタデータ) (2023-09-24T07:58:57Z) - Software Testing with Large Language Models: Survey, Landscape, and
Vision [32.34617250991638]
事前訓練された大規模言語モデル(LLM)は、自然言語処理と人工知能におけるブレークスルー技術として登場した。
本稿では,ソフトウェアテストにおけるLCMの利用状況について概説する。
論文 参考訳(メタデータ) (2023-07-14T08:26:12Z) - Towards Autonomous Testing Agents via Conversational Large Language
Models [18.302956037305112]
大規模言語モデル(LLM)は自動テストアシスタントとして使用できる。
本稿では,LSMをベースとしたテストエージェントの自律性に基づく分類法を提案する。
論文 参考訳(メタデータ) (2023-06-08T12:22:38Z) - Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models [75.75038268227554]
Self-Checkerはファクトチェックを容易にするプラグインとプレイモジュールからなるフレームワークである。
このフレームワークは、低リソース環境でファクトチェックシステムを構築するための、高速で効率的な方法を提供する。
論文 参考訳(メタデータ) (2023-05-24T01:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。