論文の概要: Neighbor-Sampling Based Momentum Stochastic Methods for Training Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2508.00267v1
- Date: Fri, 01 Aug 2025 02:22:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.713846
- Title: Neighbor-Sampling Based Momentum Stochastic Methods for Training Graph Neural Networks
- Title(参考訳): 近傍サンプリングに基づくグラフニューラルネットワークの学習のためのモーメントム確率法
- Authors: Molly Noel, Gabriel Mancino-Ball, Yangyang Xu,
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、グラフ表現学習のための強力なツールである。
本稿では,現代のディープラーニングアルゴリズムの実践的要素について述べる。
アダム型手法の標準的な仮定の下では,本手法が最適速度を享受できることが示される。
- 参考スコア(独自算出の注目度): 12.017727800531556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) are a powerful tool for graph representation learning. Due to the recursive neighborhood aggregations employed by GCNs, efficient training methods suffer from a lack of theoretical guarantees or are missing important practical elements from modern deep learning algorithms, such as adaptivity and momentum. In this paper, we present several neighbor-sampling (NS) based Adam-type stochastic methods for solving a nonconvex GCN training problem. We utilize the control variate technique proposed by [1] to reduce the stochastic error caused by neighbor sampling. Under standard assumptions for Adam-type methods, we show that our methods enjoy the optimal convergence rate. In addition, we conduct extensive numerical experiments on node classification tasks with several benchmark datasets. The results demonstrate superior performance of our methods over classic NS-based SGD that also uses the control-variate technique, especially for large-scale graph datasets. Our code is available at https://github.com/RPI-OPT/CV-ADAM-GNN .
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、グラフ表現学習のための強力なツールである。
GCNによる再帰的な近傍集約のため、効率的な訓練手法は理論的な保証の欠如に悩まされるか、適応性や運動量といった現代のディープラーニングアルゴリズムから重要な実践的要素を欠いている。
本稿では,非凸GCNトレーニング問題の解法として,近隣サンプリング(NS)に基づくAdam型確率的手法を提案する。
本稿では [1] が提案する制御変分法を用いて, 隣り合うサンプリングによる確率誤差を低減する。
アダム型手法の標準的な仮定では、この手法が最適収束率を享受できることが示される。
さらに、いくつかのベンチマークデータセットを用いて、ノード分類タスクに関する広範な数値実験を行う。
提案手法は,制御変数を用いた古典的NSベースSGDよりも優れた性能を示し,特に大規模グラフデータセットを対象としている。
私たちのコードはhttps://github.com/RPI-OPT/CV-ADAM-GNNで公開されています。
関連論文リスト
- Sparse Decomposition of Graph Neural Networks [20.768412002413843]
本稿では,集約中に含まれるノード数を削減する手法を提案する。
線形変換された特徴の重み付け和を用いてノード表現の近似を学習し、スパース分解によりこれを実現できる。
提案手法は推論高速化のために設計された他のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2024-10-25T17:52:16Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptive Residual Module [65.81781176362848]
グラフニューラルネットワーク(GNN)は、近隣情報収集を通じてグラフ構造化データから学習することができる。
レイヤーの数が増えるにつれて、ノード表現は区別不能になり、オーバー・スムーシング(over-smoothing)と呼ばれる。
我々は,textbfPosterior-Sampling-based, Node-distinguish Residual Module (PSNR)を提案する。
論文 参考訳(メタデータ) (2023-05-09T12:03:42Z) - Variational Sparse Coding with Learned Thresholding [6.737133300781134]
サンプルをしきい値にすることでスパース分布を学習できる変分スパース符号化の新しい手法を提案する。
まず,線形発生器を訓練し,その性能,統計的効率,勾配推定に優れることを示す。
論文 参考訳(メタデータ) (2022-05-07T14:49:50Z) - Scalable Consistency Training for Graph Neural Networks via
Self-Ensemble Self-Distillation [13.815063206114713]
グラフニューラルネットワーク(GNN)の精度を向上させるための新しい一貫性トレーニング手法を提案する。
対象ノードに対して、異なる近傍展開を生成し、予測平均の知識をGNNに蒸留する。
提案手法は, 推定した近傍サンプルの予測値に近似し, 実質的には少数のサンプルしか必要としない。
論文 参考訳(メタデータ) (2021-10-12T19:24:42Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
本稿では,グラフ畳み込みネットワークのためのコンパクトで問題固有のネットワークを,段階的に自動的に見つける手法を提案する。
骨格に基づく人体行動認識のための2つのデータセットの実験結果から,提案手法は競争力あるいはより優れた分類性能を有することが示された。
論文 参考訳(メタデータ) (2020-11-11T09:57:49Z) - Combining Label Propagation and Simple Models Out-performs Graph Neural
Networks [52.121819834353865]
多くの標準的なトランスダクティブノード分類ベンチマークでは、最先端のGNNの性能を超えたり、一致させることができる。
これをC&S(Correct and Smooth)と呼ぶ。
我々のアプローチは、様々なベンチマークで最先端のGNNの性能を上回るか、ほぼ一致している。
論文 参考訳(メタデータ) (2020-10-27T02:10:52Z) - Bandit Samplers for Training Graph Neural Networks [63.17765191700203]
グラフ畳み込みネットワーク(GCN)の訓練を高速化するために, ばらつきを低減したサンプリングアルゴリズムが提案されている。
これらのサンプリングアルゴリズムは、グラフ注意ネットワーク(GAT)のような固定重みよりも学習重量を含む、より一般的なグラフニューラルネットワーク(GNN)には適用できない。
論文 参考訳(メタデータ) (2020-06-10T12:48:37Z) - Towards an Efficient and General Framework of Robust Training for Graph
Neural Networks [96.93500886136532]
グラフニューラルネットワーク(GNN)は、いくつかの基本的な推論タスクに大きく進歩している。
GNNの目覚ましい性能にもかかわらず、グラフ構造上の摂動を慎重に作り、誤った予測を下すことが観察されている。
我々は,強靭なGNNを得るために,欲求探索アルゴリズムとゼロ階法を利用する汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-25T15:17:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。