論文の概要: Honey Classification using Hyperspectral Imaging and Machine Learning
- arxiv url: http://arxiv.org/abs/2508.00361v1
- Date: Fri, 01 Aug 2025 06:45:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.763189
- Title: Honey Classification using Hyperspectral Imaging and Machine Learning
- Title(参考訳): ハイパースペクトルイメージングと機械学習を用いたハニー分類
- Authors: Mokhtar A. Al-Awadhi, Ratnadeep R. Deshmukh,
- Abstract要約: データセット作成フェーズでは,クラス間の分離性を最大化するためにクラス変換手法を用いる。
特徴抽出フェーズは、関連する特徴を抽出するために線形識別分析(LDA)技術を用いる。
分類段階では,SVM(Support Vector Machines)とK-Nearest Neighbors(KNN)モデルを用いて,抽出した特徴を植物起源に分類する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a machine learning-based method for automatically classifying honey botanical origins. Dataset preparation, feature extraction, and classification are the three main steps of the proposed method. We use a class transformation method in the dataset preparation phase to maximize the separability across classes. The feature extraction phase employs the Linear Discriminant Analysis (LDA) technique for extracting relevant features and reducing the number of dimensions. In the classification phase, we use Support Vector Machines (SVM) and K-Nearest Neighbors (KNN) models to classify the extracted features of honey samples into their botanical origins. We evaluate our system using a standard honey hyperspectral imaging (HSI) dataset. Experimental findings demonstrate that the proposed system produces state-of-the-art results on this dataset, achieving the highest classification accuracy of 95.13% for hyperspectral image-based classification and 92.80% for hyperspectral instance-based classification.
- Abstract(参考訳): 本稿では,蜂蜜の起源を自動的に分類する機械学習手法を提案する。
提案手法の主な3つのステップは,データセット作成,特徴抽出,分類である。
データセット作成フェーズでは,クラス間の分離性を最大化するためにクラス変換手法を用いる。
特徴抽出フェーズはLDA(Linear Discriminant Analysis)技術を用いて,関連する特徴を抽出し,次元数を減少させる。
分類段階では,SVM(Support Vector Machines)とK-Nearest Neighbors(KNN)モデルを用いて,抽出した蜂蜜の特徴を植物起源に分類する。
標準蜂蜜ハイパースペクトルイメージング(HSI)データセットを用いて,本システムの評価を行った。
実験結果から,本システムは高スペクトル画像分類における95.13%,高スペクトル画像分類における92.80%の分類精度を達成できることがわかった。
関連論文リスト
- PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
そこで我々は,Latent Diffusion Models (LDMs) を事前学習した特徴抽出器として活用する,病理組織像分割の新しい手法であるPathSegDiffを提案する。
本手法は,H&E染色組織像から多彩な意味情報を抽出するために,自己教師型エンコーダによって誘導される病理特異的LCMを用いる。
本実験は,BCSSおよびGlaSデータセットにおける従来の手法よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2025-04-09T14:58:21Z) - Exploring Beyond Logits: Hierarchical Dynamic Labeling Based on Embeddings for Semi-Supervised Classification [49.09505771145326]
モデル予測に依存しない階層型動的ラベル付け(HDL)アルゴリズムを提案し,画像埋め込みを用いてサンプルラベルを生成する。
本手法は,半教師付き学習における擬似ラベル生成のパラダイムを変える可能性がある。
論文 参考訳(メタデータ) (2024-04-26T06:00:27Z) - Predictive Analytics of Varieties of Potatoes [2.336821989135698]
本研究では, 育種試験におけるサツマイモクローンの選択プロセスの向上を目的とした, 機械学習アルゴリズムの適用について検討する。
本研究は, 高収率, 耐病性, 耐気候性ポテト品種を効率的に同定することの課題に対処する。
論文 参考訳(メタデータ) (2024-04-04T00:49:05Z) - Hyperspectral Image Analysis with Subspace Learning-based One-Class
Classification [18.786429304405097]
ハイパースペクトル画像(HSI)分類は、環境モニタリング、医療画像、土地利用/土地被覆(LULC)分類など、多くの応用において重要な課題である。
本研究では,最近提案した1クラス分類(OCC)における部分空間学習手法について検討する。
このようにして、提案する分類フレームワークでは、個別の次元削減や特徴選択の手順は不要である。
LULC分類問題とリッチスペクトル情報(高次元)の不均衡ラベルを考えると,提案手法はHSIデータに適している。
論文 参考訳(メタデータ) (2023-04-19T15:17:05Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - A new filter for dimensionality reduction and classification of
hyperspectral images using GLCM features and mutual information [0.0]
ハイパースペクトル画像の次元化と分類のための新しい手法を提案する。
スペクトル情報と空間情報の両方を相互情報に基づいて考慮する。
3つのよく知られたハイパースペクトルベンチマークデータセットで実験が行われる。
論文 参考訳(メタデータ) (2022-11-01T13:19:08Z) - Surface Warping Incorporating Machine Learning Assisted Domain
Likelihood Estimation: A New Paradigm in Mine Geology Modelling and
Automation [68.8204255655161]
新たに取得した破砕孔データによって課される地球化学的および空間的制約に基づいて, モデル表面を再構成するバイーシアンワープ法が提案されている。
本稿では,このワーピングフレームワークに機械学習を組み込むことにより,可能性の一般化を図る。
その基礎は、p(g|c) が p(y(c)|g と似た役割を果たすような地質領域の確率のベイズ計算によって構成される。
論文 参考訳(メタデータ) (2021-02-15T10:37:52Z) - Sickle-cell disease diagnosis support selecting the most appropriate
machinelearning method: Towards a general and interpretable approach for
cellmorphology analysis from microscopy images [0.0]
本稿では,最先端技術に基づく分類手法と特徴の選択手法を提案する。
当科では,他の研究例に応用できる病原体疾患のサンプルを用いて検討した。
論文 参考訳(メタデータ) (2020-10-09T11:46:38Z) - Features based Mammogram Image Classification using Weighted Feature
Support Vector Machine [0.0]
重み付き特徴支援ベクトルマシン(WFSVM)を用いて乳房組織型の自動分類を良性または悪性とみなす。
この分析によると、テクスチャ機能はWFSVMやSVMの他の機能よりも精度が高い。
論文 参考訳(メタデータ) (2020-09-19T21:28:31Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis [0.5801044612920815]
分光データのバイナリ分類における局所接続型ニューラルネットワーク(NN)の新たな応用を提案する。
2段階の分類プロセスは、2段階の分類パラダイムと1段階の分類パラダイムの代替として提示される。
論文 参考訳(メタデータ) (2020-03-26T11:33:52Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。