Learning an Efficient Multi-Turn Dialogue Evaluator from Multiple Judges
- URL: http://arxiv.org/abs/2508.00454v1
- Date: Fri, 01 Aug 2025 09:26:01 GMT
- Title: Learning an Efficient Multi-Turn Dialogue Evaluator from Multiple Judges
- Authors: Yuqi Tang, Kehua Feng, Yunfeng Wang, Zhiwen Chen, Chengfei Lv, Gang Yu, Qiang Zhang, Keyan Ding,
- Abstract summary: We propose an efficient multi-turn dialogue evaluator that captures the collective wisdom of multiple LLM judges by aggregating their preference knowledge into a single model.<n>Our approach preserves the advantages of diverse multi-judge feedback while drastically reducing the evaluation cost, enabling fast and flexible dialogue quality assessment.
- Score: 22.7340872046127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating the conversational abilities of large language models (LLMs) remains a challenging task. Current mainstream approaches primarily rely on the ``LLM-as-a-judge" paradigm, where an LLM is prompted to serve as an evaluator to assess dialogue quality. However, such methods often suffer from various biases, which undermine the reliability and consistency of the evaluation results. To mitigate these biases, recent methods employ multiple LLMs as judges and aggregate their judgments to select the optimal assessment. Although effective, this multi-judge approach incurs significant computational overhead during inference. In this paper, we propose an efficient multi-turn dialogue evaluator that captures the collective wisdom of multiple LLM judges by aggregating their preference knowledge into a single model. Our approach preserves the advantages of diverse multi-judge feedback while drastically reducing the evaluation cost, enabling fast and flexible dialogue quality assessment. Extensive experiments on seven single rating and pairwise comparison dialogue evaluation benchmarks demonstrate that our method outperforms existing baselines across diverse scenarios, showcasing its efficiency and robustness.
Related papers
- Quantitative LLM Judges [48.676042957523045]
We propose quantitative LLM judges, which align evaluation scores of existing LLM judges to human scores in a given domain.<n>The models are trained to improve the score of the original judge by using the judge's textual evaluation and score.<n>Our experiments show that quantitative judges can effectively improve the predictive power of existing judges through post-hoc modeling.
arXiv Detail & Related papers (2025-06-03T14:44:23Z) - HREF: Human Response-Guided Evaluation of Instruction Following in Language Models [61.273153125847166]
We develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF)<n>In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination.<n>We study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template.
arXiv Detail & Related papers (2024-12-20T03:26:47Z) - JudgeBlender: Ensembling Judgments for Automatic Relevance Assessment [28.4353755578306]
Large Language Models (LLMs) have shown promise in generating relevance labels for search tasks.<n>We introduce JudgeBlender, a framework that employs smaller, open-source models to provide relevance judgments.
arXiv Detail & Related papers (2024-12-17T19:04:15Z) - Adversarial Multi-Agent Evaluation of Large Language Models through Iterative Debates [0.0]
We propose a framework that interprets large language models (LLMs) as advocates within an ensemble of interacting agents.
This approach offers a more dynamic and comprehensive evaluation process compared to traditional human-based assessments or automated metrics.
arXiv Detail & Related papers (2024-10-07T00:22:07Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
Large Language Models (LLMs) are capable of generating human-like conversations.
Conventional metrics like BLEU and ROUGE are inadequate for capturing the subtle semantics and contextual richness of such generative outputs.
We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges.
arXiv Detail & Related papers (2024-08-17T16:01:45Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.<n>LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.<n>We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - LLM-Eval: Unified Multi-Dimensional Automatic Evaluation for Open-Domain
Conversations with Large Language Models [28.441725610692714]
We propose a unified multi-dimensional automatic evaluation method for open-domain conversations with large language models (LLMs)
We design a single prompt-based evaluation method that leverages a unified evaluation schema to cover multiple dimensions of conversation quality in a single model call.
We extensively evaluate the performance of LLM-Eval on various benchmark datasets, demonstrating its effectiveness, efficiency, and adaptability compared to state-of-the-art evaluation methods.
arXiv Detail & Related papers (2023-05-23T05:57:09Z) - Towards Automatic Evaluation of Dialog Systems: A Model-Free Off-Policy
Evaluation Approach [84.02388020258141]
We propose a new framework named ENIGMA for estimating human evaluation scores based on off-policy evaluation in reinforcement learning.
ENIGMA only requires a handful of pre-collected experience data, and therefore does not involve human interaction with the target policy during the evaluation.
Our experiments show that ENIGMA significantly outperforms existing methods in terms of correlation with human evaluation scores.
arXiv Detail & Related papers (2021-02-20T03:29:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.