論文の概要: MMRAG-DocQA: A Multi-Modal Retrieval-Augmented Generation Method for Document Question-Answering with Hierarchical Index and Multi-Granularity Retrieval
- arxiv url: http://arxiv.org/abs/2508.00579v2
- Date: Thu, 14 Aug 2025 14:11:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-15 13:42:23.531061
- Title: MMRAG-DocQA: A Multi-Modal Retrieval-Augmented Generation Method for Document Question-Answering with Hierarchical Index and Multi-Granularity Retrieval
- Title(参考訳): MMRAG-DocQA:階層的指数と多粒度検索を用いた文書質問応答のためのマルチモーダル検索拡張生成法
- Authors: Ziyu Gong, Yihua Huang, Chengcheng Mai,
- Abstract要約: 本研究の目的は,質問理解と回答生成のために,複数のページに分散したマルチモーダルエビデンスを特定し,統合することである。
MMRAG-DocQAと呼ばれる新しいマルチモーダルRAGモデルが提案され、テキスト情報と視覚情報の両方を長距離ページにわたって活用した。
共同類似性評価と大規模言語モデル(LLM)に基づく再分類により,多粒度意味検索法が提案された。
- 参考スコア(独自算出の注目度): 4.400088031376775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The multi-modal long-context document question-answering task aims to locate and integrate multi-modal evidences (such as texts, tables, charts, images, and layouts) distributed across multiple pages, for question understanding and answer generation. The existing methods can be categorized into Large Vision-Language Model (LVLM)-based and Retrieval-Augmented Generation (RAG)-based methods. However, the former were susceptible to hallucinations, while the latter struggled for inter-modal disconnection and cross-page fragmentation. To address these challenges, a novel multi-modal RAG model, named MMRAG-DocQA, was proposed, leveraging both textual and visual information across long-range pages to facilitate accurate question answering. A hierarchical indexing method with the integration of flattened in-page chunks and topological cross-page chunks was designed to jointly establish in-page multi-modal associations and long-distance cross-page dependencies. By means of joint similarity evaluation and large language model (LLM)-based re-ranking, a multi-granularity semantic retrieval method, including the page-level parent page retrieval and document-level summary retrieval, was proposed to foster multi-modal evidence connection and long-distance evidence integration and reasoning. Experimental results performed on public datasets, MMLongBench-Doc and LongDocURL, demonstrated the superiority of our MMRAG-DocQA method in understanding and answering modality-rich and multi-page documents.
- Abstract(参考訳): マルチモーダル長文文書問合せタスクは、複数のページにまたがるマルチモーダルなエビデンス(テキスト、テーブル、チャート、画像、レイアウトなど)を、質問理解と回答生成のために見つけ、統合することを目的としている。
既存の手法はLVLM(Large Vision-Language Model)とRAG(Retrieval-Augmented Generation)に分類できる。
しかし、前者は幻覚に悩まされ、後者はモダル間の切断とページの断片化に苦しんだ。
これらの課題に対処するため、MMRAG-DocQAと呼ばれる新しいマルチモーダルRAGモデルが提案され、テキスト情報と視覚情報の両方を長距離ページにわたって活用し、正確な質問応答を容易にする。
フラット化されたページ内チャンクとトポロジ的クロスページチャンクを統合した階層的インデックス化手法は,複数ページの複数モーダルアソシエーションと長距離クロスページ依存性を共同で確立するように設計された。
共同類似性評価と大規模言語モデル(LLM)に基づく再分類により,ページレベルの親ページ検索と文書レベルの要約検索を含む多言語意味検索手法が提案され,複数モーダルなエビデンス接続と長距離的エビデンスの統合と推論が促進された。
公開データセットであるMMLongBench-DocとLongDocURLで行った実験結果から,MMRAG-DocQA法がモダリティに富んだ多ページ文書の理解と回答に優れていることが示された。
関連論文リスト
- Benchmarking Multimodal Understanding and Complex Reasoning for ESG Tasks [56.350173737493215]
環境・社会・ガバナンス(ESG)報告は、持続可能性の実践の評価、規制コンプライアンスの確保、財務透明性の促進に不可欠である。
MMESGBenchは、マルチモーダル理解と複雑な推論を、構造的に多種多様なマルチソースESG文書間で評価するための、最初のベンチマークデータセットである。
MMESGBenchは、45のESG文書から得られた933の検証済みQAペアで構成され、7つの異なるドキュメントタイプと3つの主要なESGソースカテゴリにまたがる。
論文 参考訳(メタデータ) (2025-07-25T03:58:07Z) - Docopilot: Improving Multimodal Models for Document-Level Understanding [87.60020625241178]
マルチモーダル文書の詳細な理解を支援するために,高品質な文書レベルデータセットDoc-750Kを提案する。
このデータセットには、さまざまなドキュメント構造、広範なクロスページ依存関係、および元のドキュメントから派生した実際の質問と回答のペアが含まれている。
データセットに基づいて、RAGに頼ることなく、文書レベルの依存関係を正確に処理できるネイティブなマルチモーダルモデルであるDocopilotを開発する。
論文 参考訳(メタデータ) (2025-07-19T16:03:34Z) - Vision-Guided Chunking Is All You Need: Enhancing RAG with Multimodal Document Understanding [0.0]
Retrieval-Augmented Generation (RAG) システムは情報検索と質問応答に革命をもたらした。
従来のテキストベースのチャンキング手法は、複雑なドキュメント構造、マルチページテーブル、埋め込みフィギュア、ページ境界を越えたコンテキスト依存に苦労する。
本稿では,Large Multimodal Models(LMM)を利用してPDF文書をバッチで処理する,新しいマルチモーダル文書チャンキング手法を提案する。
論文 参考訳(メタデータ) (2025-06-19T05:11:43Z) - A Multi-Granularity Retrieval Framework for Visually-Rich Documents [4.804551482123172]
本稿では,MMDocIRとM2KRの2つのベンチマークタスクに適した,統一されたマルチグラニュラリティマルチモーダル検索フレームワークを提案する。
提案手法は,階層型符号化戦略,モダリティ対応検索機構,視覚言語モデル(VLM)に基づく候補フィルタリングを統合する。
本フレームワークは,タスク固有の微調整を必要とせずに,堅牢な性能を示す。
論文 参考訳(メタデータ) (2025-05-01T02:40:30Z) - A Unified Retrieval Framework with Document Ranking and EDU Filtering for Multi-document Summarization [18.13855430873805]
現在の手法では、検索プロセスの後にトランケーションを適用してコンテキスト長に適合させる。
本稿では,クエリ選択と文書ランキングを統合した検索に基づく新しいフレームワークを提案する。
我々は、複数のMDSデータセット上でのフレームワークを評価し、ROUGEメトリクスの一貫した改善を実証した。
論文 参考訳(メタデータ) (2025-04-23T13:41:10Z) - M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization? [49.53982792497275]
本稿では,LVLM(Large Vision-Language Models)が文書中のインターリーブ画像テキストを真に理解しているかどうかを検討する。
既存の文書理解ベンチマークは、しばしば質問応答形式を用いてLVLMを評価する。
マルチモーダル文書要約ベンチマーク(M-DocSum-Bench)について紹介する。
M-DocSum-Benchは500の高品質なarXiv論文と、人間の好みに合わせたインターリーブされたマルチモーダル要約で構成されている。
論文 参考訳(メタデータ) (2025-03-27T07:28:32Z) - Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.30364248231053]
本稿では,M2RAG(Multi-Modal Retrieval-Augmented Generation)を紹介する。
M2RAGはマルチモーダル大言語モデル(MLLM)の有効性を評価するためのベンチマークである。
MLLMのコンテキスト利用能力を高めるため,マルチモーダル検索型インストラクションチューニング(MM-RAIT)も導入する。
論文 参考訳(メタデータ) (2025-02-24T16:25:25Z) - MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents [26.39534684408116]
この研究は、ページレベルとレイアウトレベルの検索という2つの異なるタスクを含むMMDocIRという新しいベンチマークを導入する。
MMDocIRベンチマークは、専門家によって注釈付けされた1,685の質問と、ブートストラップ付きラベル付き173,843の質問を含む、豊富なデータセットで構成されている。
論文 参考訳(メタデータ) (2025-01-15T14:30:13Z) - VisDoM: Multi-Document QA with Visually Rich Elements Using Multimodal Retrieval-Augmented Generation [100.06122876025063]
本稿では,マルチドキュメント設定でQAシステムを評価するために設計された,初の総合ベンチマークであるVisDoMBenchを紹介する。
視覚とテキストのRAGを同時に利用する新しいマルチモーダル検索拡張生成(RAG)手法であるVisDoMRAGを提案する。
論文 参考訳(メタデータ) (2024-12-14T06:24:55Z) - M3DocRAG: Multi-modal Retrieval is What You Need for Multi-page Multi-document Understanding [63.33447665725129]
M3DocRAGは、様々な文書コンテキストに柔軟に対応する新しいマルチモーダルRAGフレームワークである。
M3DocRAGは視覚情報を保存しながら、単一の文書や多数の文書を効率的に処理できる。
M3DocVQAはオープンドメインDocVQAを3,000以上のPDFドキュメントと4万以上のページで評価するための新しいベンチマークである。
論文 参考訳(メタデータ) (2024-11-07T18:29:38Z) - PDF-MVQA: A Dataset for Multimodal Information Retrieval in PDF-based Visual Question Answering [13.625303311724757]
文書質問回答(QA)は、視覚に富む文書(VRD)を理解する上での課題を提示する
我々は,複数のページとマルチモーダル情報検索を含む研究雑誌記事に適したPDF-MVQAを提案する。
論文 参考訳(メタデータ) (2024-04-19T09:00:05Z) - Enhancing Multi-modal and Multi-hop Question Answering via Structured
Knowledge and Unified Retrieval-Generation [33.56304858796142]
マルチモーダルなマルチホップ質問応答は、異なるモーダルから複数の入力ソースを推論することで質問に答える。
既存の手法は、しばしば別々に証拠を検索し、その後言語モデルを使用して、得られた証拠に基づいて回答を生成する。
本稿では,これらの問題に対処するため,構造化知識と統一検索生成(RG)アプローチを提案する。
論文 参考訳(メタデータ) (2022-12-16T18:12:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。