論文の概要: From EMR Data to Clinical Insight: An LLM-Driven Framework for Automated Pre-Consultation Questionnaire Generation
- arxiv url: http://arxiv.org/abs/2508.00581v1
- Date: Fri, 01 Aug 2025 12:24:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.875571
- Title: From EMR Data to Clinical Insight: An LLM-Driven Framework for Automated Pre-Consultation Questionnaire Generation
- Title(参考訳): EMRデータから臨床インテリジェンスへ: 自動コンサルト前問合せ作成のためのLCM駆動フレームワーク
- Authors: Ruiqing Ding, Qianfang Sun, Yongkang Leng, Hui Yin, Xiaojian Li,
- Abstract要約: 複雑な電子カルテ(EMR)から事前コンサルテーションアンケートを作成するための新しい枠組みを提案する。
この枠組みは、明確な臨床知識を構築することによって直接的手法の限界を克服する。
実世界のEMRデータセットを用いて評価し,臨床専門家が検証し,情報カバレッジ,診断関連性,理解可能性,生成時間に優れた性能を示す。
- 参考スコア(独自算出の注目度): 9.269061009613033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-consultation is a critical component of effective healthcare delivery. However, generating comprehensive pre-consultation questionnaires from complex, voluminous Electronic Medical Records (EMRs) is a challenging task. Direct Large Language Model (LLM) approaches face difficulties in this task, particularly regarding information completeness, logical order, and disease-level synthesis. To address this issue, we propose a novel multi-stage LLM-driven framework: Stage 1 extracts atomic assertions (key facts with timing) from EMRs; Stage 2 constructs personal causal networks and synthesizes disease knowledge by clustering representative networks from an EMR corpus; Stage 3 generates tailored personal and standardized disease-specific questionnaires based on these structured representations. This framework overcomes limitations of direct methods by building explicit clinical knowledge. Evaluated on a real-world EMR dataset and validated by clinical experts, our method demonstrates superior performance in information coverage, diagnostic relevance, understandability, and generation time, highlighting its practical potential to enhance patient information collection.
- Abstract(参考訳): プレコンスルテーションは、効果的なヘルスケアデリバリーの重要な構成要素である。
しかし, 複雑な電子医療記録(EMR)から包括的事前回答のアンケートを作成することは難しい課題である。
直接大規模言語モデル(LLM)は、特に情報完全性、論理的順序、病気レベルの合成に関して、この課題において困難に直面している。
この問題に対処するため,第1段階はEMRからアトミックアサーション(タイミングのある重要な事実)を抽出し,第2段階は個人因果ネットワークを構築し,EMRコーパスから代表ネットワークをクラスタリングすることで疾患知識を合成する。
この枠組みは、明確な臨床知識を構築することによって直接的手法の限界を克服する。
実世界のEMRデータセットを用いて評価し,臨床専門家による検証を行い,情報カバレッジ,診断関連性,理解可能性,生成時間において優れた性能を示し,患者情報収集の実践的可能性を強調した。
関連論文リスト
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - Patient Trajectory Prediction: Integrating Clinical Notes with Transformers [0.0]
本稿では,非構造的臨床ノートをトランスフォーマーベース深層学習モデルに統合し,シーケンシャルな疾患予測を行うアプローチを提案する。
MIMIC-IVデータセットの実験は、提案手法が構造化データのみに依存する従来のモデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2025-02-25T09:14:07Z) - Give me Some Hard Questions: Synthetic Data Generation for Clinical QA [13.436187152293515]
本稿では,ゼロショット環境での大規模言語モデル(LLM)を用いた臨床QAデータの生成について検討する。
ナイーブなプロンプトが臨床シナリオの複雑さを反映しない簡単な質問をもたらすことがよくあります。
2つの臨床QAデータセットを用いた実験により,本手法はより難解な質問を発生し,ベースライン上での微調整性能を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-12-05T19:35:41Z) - Medchain: Bridging the Gap Between LLM Agents and Clinical Practice through Interactive Sequential Benchmarking [58.25862290294702]
臨床ワークフローの5つの重要な段階をカバーする12,163の臨床症例のデータセットであるMedChainを提示する。
フィードバック機構とMCase-RAGモジュールを統合したAIシステムであるMedChain-Agentも提案する。
論文 参考訳(メタデータ) (2024-12-02T15:25:02Z) - ACR: A Benchmark for Automatic Cohort Retrieval [1.3547712404175771]
現在のコホート検索手法は、手作業によるキュレーションと組み合わせた構造化データの自動クエリに依存している。
大規模言語モデル(LLM)と情報検索(IR)の最近の進歩は、これらのシステムに革命をもたらす有望な道を提供する。
本稿では,新しいタスクであるAutomatic Cohort Retrieval (ACR)を導入し,LLMと商用のドメイン固有のニューロシンボリックアプローチの性能を評価する。
論文 参考訳(メタデータ) (2024-06-20T23:04:06Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - REALM: RAG-Driven Enhancement of Multimodal Electronic Health Records
Analysis via Large Language Models [19.62552013839689]
既存のモデルは、しばしば臨床上の課題に医学的文脈を欠いているため、外部知識の組み入れが促される。
本稿では、マルチモーダルEHR表現を強化するためのRAG(Retrieval-Augmented Generation)駆動フレームワークREALMを提案する。
MIMIC-III 死亡率と可読化タスクに関する実験は,ベースラインよりもREALM フレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-10T18:27:28Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - Retrieving Evidence from EHRs with LLMs: Possibilities and Challenges [18.56314471146199]
時間的制約を伴って患者に関連付けられた大量のメモは、実質的に不可能な証拠を手作業で特定する。
患者EHRにおける非構造的証拠を効率よく回収・要約するためのメカニズムとして, LLMを用いたゼロショット戦略を提案し, 評価した。
論文 参考訳(メタデータ) (2023-09-08T18:44:47Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。