論文の概要: Classification of Psychiatry Clinical Notes by Diagnosis: A Deep Learning and Machine Learning Approach
- arxiv url: http://arxiv.org/abs/2508.00695v1
- Date: Fri, 01 Aug 2025 15:11:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.925156
- Title: Classification of Psychiatry Clinical Notes by Diagnosis: A Deep Learning and Machine Learning Approach
- Title(参考訳): 診断による精神医学臨床ノートの分類:深層学習と機械学習アプローチ
- Authors: Sergio Rubio-Martín, María Teresa García-Ordás, Antonio Serrano-García, Clara Margarita Franch-Pato, Arturo Crespo-Álvaro, José Alberto Benítez-Andrades,
- Abstract要約: 決定木(Decision Tree)とeXtreme Gradient Boost(eXtreme Gradient Boost)モデルは、機械学習のアプローチの中で最高の精度を達成した。
DistilBERTとSciBERTモデルは、ディープラーニングカテゴリで96%の精度を達成した。
- 参考スコア(独自算出の注目度): 1.4019041243188557
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The classification of clinical notes into specific diagnostic categories is critical in healthcare, especially for mental health conditions like Anxiety and Adjustment Disorder. In this study, we compare the performance of various Artificial Intelligence models, including both traditional Machine Learning approaches (Random Forest, Support Vector Machine, K-nearest neighbors, Decision Tree, and eXtreme Gradient Boost) and Deep Learning models (DistilBERT and SciBERT), to classify clinical notes into these two diagnoses. Additionally, we implemented three oversampling strategies: No Oversampling, Random Oversampling, and Synthetic Minority Oversampling Technique (SMOTE), to assess their impact on model performance. Hyperparameter tuning was also applied to optimize model accuracy. Our results indicate that oversampling techniques had minimal impact on model performance overall. The only exception was SMOTE, which showed a positive effect specifically with BERT-based models. However, hyperparameter optimization significantly improved accuracy across the models, enhancing their ability to generalize and perform on the dataset. The Decision Tree and eXtreme Gradient Boost models achieved the highest accuracy among machine learning approaches, both reaching 96%, while the DistilBERT and SciBERT models also attained 96% accuracy in the deep learning category. These findings underscore the importance of hyperparameter tuning in maximizing model performance. This study contributes to the ongoing research on AI-assisted diagnostic tools in mental health by providing insights into the efficacy of different model architectures and data balancing methods.
- Abstract(参考訳): 臨床ノートを特定の診断カテゴリーに分類することは、特に不安や調整障害のような精神状態において、医療において重要である。
本研究では,従来の機械学習モデル(Random Forest, Support Vector Machine, K-nearest neighbors, Decision Tree, eXtreme Gradient Boost)とDeep Learningモデル(DistilBERT, SciBERT)を比較し,これらの2つの診断に臨床ノートを分類する。
さらに、モデルパフォーマンスへの影響を評価するために、No Oversampling、Random Oversampling、Synthetic Minority Oversampling Technique (SMOTE)の3つのオーバーサンプリング戦略を実装した。
モデル精度の最適化にもハイパーパラメータチューニングが用いられた。
以上の結果から,オーバーサンプリング手法が全体のモデル性能に与える影響は最小限であることが示唆された。
唯一の例外はSMOTEであり、BERTベースのモデルに特有な効果を示した。
しかし、ハイパーパラメータ最適化により、モデル全体の精度が大幅に向上し、データセットの一般化とパフォーマンスが向上した。
Decision TreeとeXtreme Gradient Boostモデルは、どちらも96%に達し、DetilBERTとSciBERTのモデルもディープラーニングカテゴリで96%の精度を達成した。
これらの結果は,モデル性能の最大化におけるハイパーパラメータチューニングの重要性を浮き彫りにした。
本研究は、異なるモデルアーキテクチャとデータバランス方法の有効性に関する洞察を提供することにより、メンタルヘルスにおけるAI支援診断ツールの継続的な研究に寄与する。
関連論文リスト
- Comparative Evaluation of Radiomics and Deep Learning Models for Disease Detection in Chest Radiography [0.0]
胸部X線撮影における疾患検出のための放射線治療と深層学習によるアプローチについて検討した。
深層学習モデルは画像データから直接学習し、放射能ベースのモデルは手作りの特徴を抽出する。
これらの知見は、診断AIにおけるモデル選択のための統計的に検証された、データ駆動の推奨を提供する。
論文 参考訳(メタデータ) (2025-04-16T16:54:37Z) - Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
外傷性脳損傷(TBI)患者の呼吸器関連肺炎(VAP)は重大な死亡リスクをもたらす。
TBI患者のVAPのタイムリーな検出と予後は、患者の予後を改善し、医療資源の負担を軽減するために重要である。
我々はMIMIC-IIIデータベースを用いて6つの機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-08-02T09:44:18Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
自閉症スペクトラム障害(Autistic Spectrum disorder、ASD)は、社会的相互作用、コミュニケーション、反復活動の困難を特徴とする神経疾患である。
本研究は,診断プロセスの強化と自動化を目的として,多様な機械学習手法を用いて重要なASD特性を同定する。
論文 参考訳(メタデータ) (2023-09-20T21:23:37Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Comparative Analysis of Epileptic Seizure Prediction: Exploring Diverse
Pre-Processing Techniques and Machine Learning Models [0.0]
脳波データを用いたてんかん発作予測のための5つの機械学習モデルの比較分析を行った。
本分析の結果は,各モデルの性能を精度で示すものである。
ETモデルは99.29%の精度で最高の性能を示した。
論文 参考訳(メタデータ) (2023-08-06T08:50:08Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
皮膚がんは最も一般的な悪性腫瘍の1つであり、人口に影響を与え、世界中で経済的な重荷を負っている。
皮膚がん検出のほとんどの研究は、ポータブルデバイス上での計算資源の制限を考慮せずに、高い予測精度を追求している。
本研究は,皮膚疾患分類のための汎用的なKDフレームワークに多様な知識を統一する,SSD-KDと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T06:54:29Z) - Development of patients triage algorithm from nationwide COVID-19
registry data based on machine learning [1.0323063834827415]
本稿では,機械学習技術を用いた重症度評価モデルの開発過程について述べる。
モデルは基本的な患者の基本的個人データのみを必要とするため、患者は自身の重症度を判断できる。
本研究の目的は、患者が自身の重症度をチェックできる医療システムを構築し、同様の重症度を持つ他の患者の過去の治療内容に基づいて、適切な診療所への訪問を通知することである。
論文 参考訳(メタデータ) (2021-09-18T19:56:27Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。