論文の概要: Can Large Pretrained Depth Estimation Models Help With Image Dehazing?
- arxiv url: http://arxiv.org/abs/2508.00698v2
- Date: Fri, 08 Aug 2025 02:04:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-11 12:11:10.857411
- Title: Can Large Pretrained Depth Estimation Models Help With Image Dehazing?
- Title(参考訳): 大規模深度推定モデルは画像のデハージングに役立つか?
- Authors: Hongfei Zhang, Kun Zhou, Ruizheng Wu, Jiangbo Lu,
- Abstract要約: 現実のシーンにおけるヘイズの性質が空間的に異なるため、画像のデハージングは依然として困難な問題である。
本稿では,様々なデハージングアーキテクチャとシームレスに統合可能なRGB-D融合モジュールを提案する。
- 参考スコア(独自算出の注目度): 35.4696172315888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image dehazing remains a challenging problem due to the spatially varying nature of haze in real-world scenes. While existing methods have demonstrated the promise of large-scale pretrained models for image dehazing, their architecture-specific designs hinder adaptability across diverse scenarios with different accuracy and efficiency requirements. In this work, we systematically investigate the generalization capability of pretrained depth representations-learned from millions of diverse images-for image dehazing. Our empirical analysis reveals that the learned deep depth features maintain remarkable consistency across varying haze levels. Building on this insight, we propose a plug-and-play RGB-D fusion module that seamlessly integrates with diverse dehazing architectures. Extensive experiments across multiple benchmarks validate both the effectiveness and broad applicability of our approach.
- Abstract(参考訳): 現実のシーンにおけるヘイズの性質が空間的に異なるため、画像のデハージングは依然として困難な問題である。
既存の手法では、画像のデハジングのための大規模な事前訓練モデルの可能性を実証しているが、アーキテクチャ固有の設計は、精度と効率の異なる様々なシナリオへの適応性を妨げている。
本研究では,数百万の多様な画像から学習した事前学習した深度表現の一般化能力について,系統的に検討する。
実験によって得られた深度の特徴は,様々なヘイズレベルにまたがる顕著な一貫性を保っていることが明らかとなった。
この知見に基づいて,多様なデハージングアーキテクチャとシームレスに統合可能なRGB-D融合モジュールを提案する。
複数のベンチマークにわたる大規模な実験は、我々のアプローチの有効性と幅広い適用性の両方を検証する。
関連論文リスト
- One Diffusion to Generate Them All [54.82732533013014]
OneDiffusionは双方向画像合成と理解をサポートする汎用的で大規模な拡散モデルである。
テキスト、深さ、ポーズ、レイアウト、セマンティックマップなどの入力から条件生成を可能にする。
OneDiffusionは、シーケンシャルな画像入力を使用して、マルチビュー生成、カメラポーズ推定、即時パーソナライズを可能にする。
論文 参考訳(メタデータ) (2024-11-25T12:11:05Z) - LMHaze: Intensity-aware Image Dehazing with a Large-scale Multi-intensity Real Haze Dataset [14.141433473509826]
本稿では,大規模で高品質な実世界のデータセットLMHazeを紹介する。
LMHazeは、屋内および屋外の多様な環境で撮影された、ヘイズフリーとヘイズフリーの2つの画像で構成されている。
そこで本研究では,Mambaをベースとした混合実験モデルを提案する。
論文 参考訳(メタデータ) (2024-10-21T15:20:02Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
マルチ露光画像融合(MEF)は、様々な露光レベルを表すデジタルイメージングの限界に対処するための重要な解決策である。
本稿では、ネットワーク構造と損失関数の両方を自動設計するための二段階最適化探索方式であるHSDS-MEFと呼ばれるMEFのためのハイブリッドスーパービジョンデュアルサーチ手法を提案する。
論文 参考訳(メタデータ) (2023-09-03T08:07:26Z) - Explainable Multi-View Deep Networks Methodology for Experimental Physics [0.19574002186090492]
物理実験は、X線スキャンや顕微鏡画像などの複数の画像表現を含むことが多い。
深層学習モデルはこれらの実験において教師あり分析に広く利用されている。
マルチビューデータが現れ、それぞれのサンプルは異なる角度、ソース、モダリティからのビューによって記述される。
マルチビューモデルには適切な説明責任が欠如しており、アーキテクチャのため説明が難しい。
論文 参考訳(メタデータ) (2023-08-16T08:13:38Z) - Robust Self-Supervised Extrinsic Self-Calibration [25.727912226753247]
マルチカメラによるビデオからの単眼深度推定は、環境を判断する上で有望な方法である。
本稿では,自己教師型単眼深度と自我運動学習の原理を基礎として,外因性キャリブレーションの新たな手法を提案する。
論文 参考訳(メタデータ) (2023-08-04T06:20:20Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Dense Depth Distillation with Out-of-Distribution Simulated Images [30.79756881887895]
単分子深度推定(MDE)のためのデータフリー知識蒸留(KD)について検討する。
KDは、訓練された教師モデルからそれを圧縮し、対象領域でのトレーニングデータを欠くことにより、現実世界の深度知覚タスクの軽量モデルを学ぶ。
提案手法は, トレーニング画像の1/6に留まらず, ベースラインKDのマージンが良好であり, 性能も若干向上していることを示す。
論文 参考訳(メタデータ) (2022-08-26T07:10:01Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
本稿では,多フレーム画像復元作業によく用いられる最大後部定式化の深部再パラメータ化を提案する。
提案手法は,学習された誤差メトリックと,対象画像の潜在表現を導入することによって導かれる。
我々は、バースト復調およびバースト超解像データセットに関する包括的な実験を通して、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2021-08-18T17:57:02Z) - Enhancing Photorealism Enhancement [83.88433283714461]
本稿では,畳み込みネットワークを用いた合成画像のリアリズム向上手法を提案する。
一般的に使用されるデータセットのシーンレイアウトの分布を分析し、重要な方法で異なることを見つけます。
近年のイメージ・ツー・イメージ翻訳法と比較して,安定性とリアリズムの大幅な向上が報告されている。
論文 参考訳(メタデータ) (2021-05-10T19:00:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。