論文の概要: A Simple and Effective Method for Uncertainty Quantification and OOD Detection
- arxiv url: http://arxiv.org/abs/2508.00754v1
- Date: Fri, 01 Aug 2025 16:31:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.954242
- Title: A Simple and Effective Method for Uncertainty Quantification and OOD Detection
- Title(参考訳): 不確実性定量化とOOD検出のための簡便かつ効果的な方法
- Authors: Yaxin Ma, Benjamin Colburn, Jose C. Principe,
- Abstract要約: 分布シフトの不確かさを定量化するために,特徴空間密度に基づく効果的な手法を提案する。
具体的には、カーネル密度推定から得られた情報ポテンシャル場を利用して、トレーニングセットの特徴空間密度を近似する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Bayesian neural networks and deep ensemble methods have been proposed for uncertainty quantification; however, they are computationally intensive and require large storage. By utilizing a single deterministic model, we can solve the above issue. We propose an effective method based on feature space density to quantify uncertainty for distributional shifts and out-of-distribution (OOD) detection. Specifically, we leverage the information potential field derived from kernel density estimation to approximate the feature space density of the training set. By comparing this density with the feature space representation of test samples, we can effectively determine whether a distributional shift has occurred. Experiments were conducted on a 2D synthetic dataset (Two Moons and Three Spirals) as well as an OOD detection task (CIFAR-10 vs. SVHN). The results demonstrate that our method outperforms baseline models.
- Abstract(参考訳): ベイズニューラルネットワークとディープアンサンブル法は不確実性定量化のために提案されているが、計算集約であり、大きな記憶を必要とする。
一つの決定論的モデルを利用することで、上記の問題を解決することができる。
そこで本研究では,分布シフトとアウト・オブ・ディストリビューション(OOD)検出の不確かさを定量化するために,特徴空間密度に基づく効果的な手法を提案する。
具体的には、カーネル密度推定から得られた情報ポテンシャル場を利用して、トレーニングセットの特徴空間密度を近似する。
この密度をテストサンプルの特徴空間表現と比較することにより、分散シフトが発生したかどうかを効果的に決定できる。
2次元合成データセット(2つの月と3つのスパイラル)とOOD検出タスク(CIFAR-10 vs. SVHN)で実験を行った。
その結果,本手法はベースラインモデルよりも優れていた。
関連論文リスト
- Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - High-dimensional and Permutation Invariant Anomaly Detection [0.1450405446885067]
拡散モデルに基づく粒子物理データに対する置換不変密度推定器を提案する。
学習密度を置換不変な異常検出スコアとして利用することにより,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-06-06T18:01:03Z) - Machine-Learned Exclusion Limits without Binning [0.0]
我々は、1次元信号と背景確率密度関数を抽出するためにカーネル密度推定器(KDE)を含むMLL法を拡張した。
本手法は,レプトン対に崩壊するエキゾチックヒッグス粒子の探索と,レプトン対に崩壊するZ'$ボソンの2例に適用する。
論文 参考訳(メタデータ) (2022-11-09T11:04:50Z) - Out-of-Distribution Detection with Class Ratio Estimation [4.930817402876787]
近年,OOD画像の検出作業において,密度に基づくアウト・オブ・ディストリビューション(OOD)検出は信頼性が低いことが示されている。
本稿では,エネルギーモデルを構築し,異なる基底分布を用いる新しい枠組みの下で,密度比に基づく手法を統合することを提案する。
論文 参考訳(メタデータ) (2022-06-08T15:20:49Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Featurized Density Ratio Estimation [82.40706152910292]
本研究では,2つの分布を推定前の共通特徴空間にマッピングするために,可逆生成モデルを活用することを提案する。
この偉業化は、学習された入力空間の密度比が任意に不正確な場合、潜在空間において密度が密接な関係をもたらす。
同時に、特徴写像の可逆性は、特徴空間で計算された比が入力空間で計算された比と同値であることを保証する。
論文 参考訳(メタデータ) (2021-07-05T18:30:26Z) - Meta-Learning for Relative Density-Ratio Estimation [59.75321498170363]
相対密度比推定(DRE)の既存の方法は、両方の密度から多くのインスタンスを必要とする。
本稿では,関係データセットの知識を用いて,相対密度比を数例から推定する,相対DREのメタラーニング手法を提案する。
提案手法の有効性を,相対的DRE,データセット比較,外乱検出の3つの問題を用いて実証的に実証した。
論文 参考訳(メタデータ) (2021-07-02T02:13:45Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - Anomaly Detection with Density Estimation [2.0813318162800707]
我々は新しい教師なし異常検出手法(ANODE)を提案する。
信号領域およびサイドバンドにおけるデータの確率密度を推定することにより、データとバックグラウンドとの確率比を構築することができる。
ANODEは信号領域とサイドバンドの体系的な違いに対して堅牢であり、他の方法よりも広い適用性を与えている。
論文 参考訳(メタデータ) (2020-01-14T19:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。