Evaluating Angle and Amplitude Encoding Strategies for Variational Quantum Machine Learning: their impact on model's accuracy
- URL: http://arxiv.org/abs/2508.00768v2
- Date: Mon, 04 Aug 2025 07:32:28 GMT
- Title: Evaluating Angle and Amplitude Encoding Strategies for Variational Quantum Machine Learning: their impact on model's accuracy
- Authors: Antonio Tudisco, Andrea Marchesin, Maurizio Zamboni, Mariagrazia Graziano, Giovanna Turvani,
- Abstract summary: Variational Quantum Circuit (VQC) is a hybrid model where the quantum circuit handles data inference while classical optimization adjusts the parameters of the circuit.<n>This work involves performing an analysis by considering both Amplitude- and Angle-encoding models, and examining how the type of rotational gate applied affects the classification performance of the model.<n>The study demonstrates that, under identical model topologies, the difference in accuracy between the best and worst models ranges from 10% to 30%, with differences reaching up to 41%.
- Score: 0.6553587309274792
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Quantum Computing and Machine Learning have increased attention to Quantum Machine Learning (QML), which aims to develop machine learning models by exploiting the quantum computing paradigm. One of the widely used models in this area is the Variational Quantum Circuit (VQC), a hybrid model where the quantum circuit handles data inference while classical optimization adjusts the parameters of the circuit. The quantum circuit consists of an encoding layer, which loads data into the circuit, and a template circuit, known as the ansatz, responsible for processing the data. This work involves performing an analysis by considering both Amplitude- and Angle-encoding models, and examining how the type of rotational gate applied affects the classification performance of the model. This comparison is carried out by training the different models on two datasets, Wine and Diabetes, and evaluating their performance. The study demonstrates that, under identical model topologies, the difference in accuracy between the best and worst models ranges from 10% to 30%, with differences reaching up to 41%. Moreover, the results highlight how the choice of rotational gates used in encoding can significantly impact the model's classification performance. The findings confirm that the embedding represents a hyperparameter for VQC models.
Related papers
- An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.<n>We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.<n>We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Optimizing Hyperparameters for Quantum Data Re-Uploaders in Calorimetric Particle Identification [11.099632666738177]
We present an application of a single-qubit Data Re-Uploading (QRU) quantum model for particle classification in calorimetric experiments.<n>This model requires minimal qubits while delivering strong classification performance.
arXiv Detail & Related papers (2024-12-16T23:10:00Z) - Lean classical-quantum hybrid neural network model for image classification [12.353900068459446]
We introduce a Lean Classical-Quantum Hybrid Neural Network (LCQHNN), which achieves efficient classification performance with only four layers of variational circuits.<n>Our experiments demonstrate that LCQHNN achieves 100%, 99.02%, and 85.55% classification accuracy on MNIST, FashionMNIST, and CIFAR-10 datasets.
arXiv Detail & Related papers (2024-12-03T00:37:11Z) - Quantum Neural Networks in Practice: A Comparative Study with Classical Models from Standard Data Sets to Industrial Images [0.5892638927736115]
We compare the performance of randomized classical and quantum neural networks (NNs) as well as classical and quantum-classical hybrid convolutional neural networks (CNNs) for the task of binary image classification.<n>We evaluate these approaches on three data sets of increasing complexity.<n>Cross-dataset performance analysis revealed limited transferability of quantum models between different classification tasks.
arXiv Detail & Related papers (2024-11-28T17:13:45Z) - Strategic Data Re-Uploads: A Pathway to Improved Quantum Classification Data Re-Uploading Strategies for Improved Quantum Classifier Performance [0.0]
Re-uploading classical information into quantum states multiple times can enhance the accuracy of quantum classifiers.
We demonstrate our approach to two classification patterns: a linear classification pattern (LCP) and a non-linear classification pattern (NLCP)
arXiv Detail & Related papers (2024-05-15T14:28:00Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
Variational quantum circuits (VQCs) hold promise for quantum machine learning on noisy intermediate-scale quantum (NISQ) devices.
While tensor-train networks (TTNs) can enhance VQC representation and generalization, the resulting hybrid model, TTN-VQC, faces optimization challenges due to the Polyak-Lojasiewicz (PL) condition.
To mitigate this challenge, we introduce Pre+TTN-VQC, a pre-trained TTN model combined with a VQC.
arXiv Detail & Related papers (2023-05-18T03:08:18Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.