A Dynamic, Context-Aware Framework for Risky Driving Prediction Using Naturalistic Data
- URL: http://arxiv.org/abs/2508.00888v1
- Date: Sat, 26 Jul 2025 16:24:25 GMT
- Title: A Dynamic, Context-Aware Framework for Risky Driving Prediction Using Naturalistic Data
- Authors: Amir Hossein Kalantari, Eleonora Papadimitriou, Amir Pooyan Afghari,
- Abstract summary: This study proposes a dynamic and individualised framework for identifying risky driving behaviour using Belgian driving data.<n>Two safety indicators, speed-weighted headway and harsh driving events, were evaluated using three data-driven models.<n>The findings support the value of adaptive, personalised risk detection approaches for enhancing real-time safety feedback.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Naturalistic driving studies offer a powerful means for observing and quantifying real-world driving behaviour. One of their prominent applications in traffic safety is the continuous monitoring and classification of risky driving behaviour. However, many existing frameworks rely on fixed time windows and static thresholds for distinguishing between safe and risky behaviour - limiting their ability to respond to the stochastic nature of real-world driving. This study proposes a dynamic and individualised framework for identifying risky driving behaviour using Belgian naturalistic driving data. The approach leverages a rolling time window and bi-level optimisation to dynamically calibrate both risk thresholds and model hyperparameters, capturing subtle behavioural shifts. Two safety indicators, speed-weighted headway and harsh driving events, were evaluated using three data-driven models: Random Forest, XGBoost, and Deep Neural Network (DNN). The DNN demonstrated strong capability in capturing subtle changes in driving behaviour, particularly excelling in high-recall tasks, making it promising for early-stage risk detection. XGBoost provided the most balanced and stable performance across different thresholds and evaluation metrics. While random forest showed more variability, it responded sensitively to dynamic threshold adjustments, which may be advantageous during model adaptation or tuning. Speed-weighted headway emerged as a more stable and context-sensitive risk indicator than harsh driving events, likely due to its robustness to label sparsity and contextual variation. Overall, the findings support the value of adaptive, personalised risk detection approaches for enhancing real-time safety feedback and tailoring driver support in intelligent transport systems.
Related papers
- Learning collision risk proactively from naturalistic driving data at scale [3.1457219084519004]
This study introduces the Generalised Surrogate Safety Measure (GSSM)<n>GSSM learns collision risk from naturalistic driving without the need for crash or risk labels.<n> Diverse data from naturalistic driving, including motion kinematics, weather, lighting, etc., are used to train multiple GSSMs.<n>A basic GSSM using only instantaneous motion kinematics achieves an area under the precision-recall curve of 0.9 and secures a median time advance of 2.6 seconds to prevent potential collisions.
arXiv Detail & Related papers (2025-05-19T07:22:32Z) - Natural Reflection Backdoor Attack on Vision Language Model for Autonomous Driving [55.96227460521096]
Vision-Language Models (VLMs) have been integrated into autonomous driving systems to enhance reasoning capabilities.<n>We propose a natural reflection-based backdoor attack targeting VLM systems in autonomous driving scenarios.<n>Our findings uncover a new class of attacks that exploit the stringent real-time requirements of autonomous driving.
arXiv Detail & Related papers (2025-05-09T20:28:17Z) - RADE: Learning Risk-Adjustable Driving Environment via Multi-Agent Conditional Diffusion [17.46462636610847]
Risk- Driving Environment (RADE) is a simulation framework that generates statistically realistic and risk-adjustable traffic scenes.<n>RADE learns risk-conditioned behaviors directly from data, preserving naturalistic multi-agent interactions with controllable risk levels.<n>We validate RADE on the real-world rounD dataset, demonstrating that it preserves statistical realism across varying risk levels.
arXiv Detail & Related papers (2025-05-06T04:41:20Z) - Minds on the Move: Decoding Trajectory Prediction in Autonomous Driving with Cognitive Insights [18.92479778025183]
In driving scenarios, a vehicle's trajectory is determined by the decision-making process of human drivers.<n>Previous models fail to capture the true intentions of human drivers, leading to suboptimal performance in long-term trajectory prediction.<n>We introduce a Cognitive-Informed Transformer (CITF) that incorporates a cognitive concept, Perceived Safety, to interpret drivers' decision-making mechanisms.
arXiv Detail & Related papers (2025-02-27T13:43:17Z) - INSIGHT: Enhancing Autonomous Driving Safety through Vision-Language Models on Context-Aware Hazard Detection and Edge Case Evaluation [7.362380225654904]
INSIGHT is a hierarchical vision-language model (VLM) framework designed to enhance hazard detection and edge-case evaluation.<n>By using multimodal data fusion, our approach integrates semantic and visual representations, enabling precise interpretation of driving scenarios.<n> Experimental results on the BDD100K dataset demonstrate a substantial improvement in hazard prediction straightforwardness and accuracy over existing models.
arXiv Detail & Related papers (2025-02-01T01:43:53Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Leveraging Driver Field-of-View for Multimodal Ego-Trajectory Prediction [69.29802752614677]
RouteFormer is a novel ego-trajectory prediction network combining GPS data, environmental context, and the driver's field-of-view.<n>To tackle data scarcity and enhance diversity, we introduce GEM, a dataset of urban driving scenarios enriched with synchronized driver field-of-view and gaze data.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by Reality [46.909086734963665]
This paper introduces RACER, a cutting-edge deep learning car-following model to predict Adaptive Cruise Control (ACC) driving behavior.<n>Unlike conventional models, RACER effectively integrates Rational Driving Constraints (RDCs), crucial tenets of actual driving.<n> RACER excels across key metrics, such as acceleration, velocity, and spacing, registering zero violations.
arXiv Detail & Related papers (2023-12-12T06:21:30Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Addressing Inherent Uncertainty: Risk-Sensitive Behavior Generation for
Automated Driving using Distributional Reinforcement Learning [0.0]
We propose a two-step approach for risk-sensitive behavior generation for self-driving vehicles.
First, we learn an optimal policy in an uncertain environment with Deep Distributional Reinforcement Learning.
During execution, the optimal risk-sensitive action is selected by applying established risk criteria.
arXiv Detail & Related papers (2021-02-05T11:45:12Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Can Autonomous Vehicles Identify, Recover From, and Adapt to
Distribution Shifts? [104.04999499189402]
Out-of-training-distribution (OOD) scenarios are a common challenge of learning agents at deployment.
We propose an uncertainty-aware planning method, called emphrobust imitative planning (RIP)
Our method can detect and recover from some distribution shifts, reducing the overconfident and catastrophic extrapolations in OOD scenes.
We introduce an autonomous car novel-scene benchmark, textttCARNOVEL, to evaluate the robustness of driving agents to a suite of tasks with distribution shifts.
arXiv Detail & Related papers (2020-06-26T11:07:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.