Small sample-based adaptive text classification through iterative and contrastive description refinement
- URL: http://arxiv.org/abs/2508.00957v1
- Date: Fri, 01 Aug 2025 11:12:38 GMT
- Title: Small sample-based adaptive text classification through iterative and contrastive description refinement
- Authors: Amrit Rajeev, Udayaadithya Avadhanam, Harshula Tulapurkar, SaiBarath Sundar,
- Abstract summary: Large language models (LLMs) often struggle to generalize in domains with evolving knowledge and ambiguous category boundaries.<n>We propose a classification framework that combines iterative topic refinement, contrastive prompting, and active learning.<n>The framework features a human-in-the-loop component, allowing users to introduce or revise category definitions in natural language.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-shot text classification remains a difficult task in domains with evolving knowledge and ambiguous category boundaries, such as ticketing systems. Large language models (LLMs) often struggle to generalize in these scenarios due to limited topic separability, while few-shot methods are constrained by insufficient data diversity. We propose a classification framework that combines iterative topic refinement, contrastive prompting, and active learning. Starting with a small set of labeled samples, the model generates initial topic labels. Misclassified or ambiguous samples are then used in an iterative contrastive prompting process to refine category distinctions by explicitly teaching the model to differentiate between closely related classes. The framework features a human-in-the-loop component, allowing users to introduce or revise category definitions in natural language. This enables seamless integration of new, unseen categories without retraining, making the system well-suited for real-world, dynamic environments. The evaluations on AGNews and DBpedia demonstrate strong performance: 91% accuracy on AGNews (3 seen, 1 unseen class) and 84% on DBpedia (8 seen, 1 unseen), with minimal accuracy shift after introducing unseen classes (82% and 87%, respectively). The results highlight the effectiveness of prompt-based semantic reasoning for fine-grained classification with limited supervision.
Related papers
- Label-template based Few-Shot Text Classification with Contrastive Learning [7.964862748983985]
We propose a simple and effective few-shot text classification framework.<n>Label templates are embedded into input sentences to fully utilize the potential value of class labels.<n> supervised contrastive learning is utilized to model the interaction information between support samples and query samples.
arXiv Detail & Related papers (2024-12-13T12:51:50Z) - Liberating Seen Classes: Boosting Few-Shot and Zero-Shot Text Classification via Anchor Generation and Classification Reframing [38.84431954053434]
Few-shot and zero-shot text classification aim to recognize samples from novel classes with limited labeled samples or no labeled samples at all.
We propose a simple and effective strategy for few-shot and zero-shot text classification.
arXiv Detail & Related papers (2024-05-06T15:38:32Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute
Decomposition-Aggregation [33.25304533086283]
Open-vocabulary semantic segmentation is a challenging task that requires segmenting novel object categories at inference time.
Recent studies have explored vision-language pre-training to handle this task, but suffer from unrealistic assumptions in practical scenarios.
This work proposes a novel attribute decomposition-aggregation framework, AttrSeg, inspired by human cognition in understanding new concepts.
arXiv Detail & Related papers (2023-08-31T19:34:09Z) - Learning Context-aware Classifier for Semantic Segmentation [88.88198210948426]
In this paper, contextual hints are exploited via learning a context-aware classifier.
Our method is model-agnostic and can be easily applied to generic segmentation models.
With only negligible additional parameters and +2% inference time, decent performance gain has been achieved on both small and large models.
arXiv Detail & Related papers (2023-03-21T07:00:35Z) - Class Enhancement Losses with Pseudo Labels for Zero-shot Semantic
Segmentation [40.09476732999614]
Mask proposal models have significantly improved the performance of zero-shot semantic segmentation.
The use of a background' embedding during training in these methods is problematic as the resulting model tends to over-learn and assign all unseen classes as the background class instead of their correct labels.
This paper proposes novel class enhancement losses to bypass the use of the background embbedding during training, and simultaneously exploit the semantic relationship between text embeddings and mask proposals by ranking the similarity scores.
arXiv Detail & Related papers (2023-01-18T06:55:02Z) - Evaluating Unsupervised Text Classification: Zero-shot and
Similarity-based Approaches [0.6767885381740952]
Similarity-based approaches attempt to classify instances based on similarities between text document representations and class description representations.
Zero-shot text classification approaches aim to generalize knowledge gained from a training task by assigning appropriate labels of unknown classes to text documents.
This paper conducts a systematic evaluation of different similarity-based and zero-shot approaches for text classification of unseen classes.
arXiv Detail & Related papers (2022-11-29T15:14:47Z) - CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class
Classification [57.62886091828512]
We propose a brand-new prefix-tuning method, Counterfactual Contrastive Prefix-tuning (CCPrefix) for many-class classification.
Basically, an instance-dependent soft prefix, derived from fact-counterfactual pairs in the label space, is leveraged to complement the language verbalizers in many-class classification.
arXiv Detail & Related papers (2022-11-11T03:45:59Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
Few-shot Intent Detection is challenging due to the scarcity of available annotated utterances.
Semantic components are distilled from utterances via multi-head self-attention.
Our method provides a comprehensive matching measure to enhance representations of both labeled and unlabeled instances.
arXiv Detail & Related papers (2020-10-06T05:16:38Z) - Cooperative Bi-path Metric for Few-shot Learning [50.98891758059389]
We make two contributions to investigate the few-shot classification problem.
We report a simple and effective baseline trained on base classes in the way of traditional supervised learning.
We propose a cooperative bi-path metric for classification, which leverages the correlations between base classes and novel classes to further improve the accuracy.
arXiv Detail & Related papers (2020-08-10T11:28:52Z) - Latent Embedding Feedback and Discriminative Features for Zero-Shot
Classification [139.44681304276]
zero-shot learning aims to classify unseen categories for which no data is available during training.
Generative Adrial Networks synthesize unseen class features by leveraging class-specific semantic embeddings.
We propose to enforce semantic consistency at all stages of zero-shot learning: training, feature synthesis and classification.
arXiv Detail & Related papers (2020-03-17T17:34:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.