MAO-ARAG: Multi-Agent Orchestration for Adaptive Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2508.01005v1
- Date: Fri, 01 Aug 2025 18:15:22 GMT
- Title: MAO-ARAG: Multi-Agent Orchestration for Adaptive Retrieval-Augmented Generation
- Authors: Yiqun Chen, Erhan Zhang, Lingyong Yan, Shuaiqiang Wang, Jizhou Huang, Dawei Yin, Jiaxin Mao,
- Abstract summary: In question-answering (QA) systems, Retrieval-Augmented Generation (RAG) has become pivotal in enhancing response accuracy and reducing hallucination issues.<n>We propose an adaptive RAG framework called MAO-ARAG, which leverages multi-agent orchestration.
- Score: 35.853052535353775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In question-answering (QA) systems, Retrieval-Augmented Generation (RAG) has become pivotal in enhancing response accuracy and reducing hallucination issues. The architecture of RAG systems varies significantly, encompassing single-round RAG, iterative RAG, and reasoning RAG, each tailored to address different types of queries. Due to the varying complexity of real-world queries, a fixed RAG pipeline often struggles to balance performance and cost efficiency across different queries. To address this challenge, we propose an adaptive RAG framework called MAO-ARAG, which leverages multi-agent orchestration. Our adaptive RAG is conceived as a multi-turn framework. Specifically, we define multiple executor agents, representing typical RAG modules such as query reformulation agents, document selection agent, and generation agents. A planner agent intelligently selects and integrates the appropriate agents from these executors into a suitable workflow tailored for each query, striving for high-quality answers while maintaining reasonable costs. During each turn, the planner agent is trained using reinforcement learning, guided by an outcome-based reward (F1 score) and a cost-based penalty, continuously improving answer quality while keeping costs within a reasonable range. Experiments conducted on multiple QA datasets demonstrate that our approach, which dynamically plans workflows for each query, not only achieves high answer quality but also maintains both cost and latency within acceptable limits.The code of MAO-ARAG is on https://github.com/chenyiqun/Agentic-RAG.
Related papers
- MA-RAG: Multi-Agent Retrieval-Augmented Generation via Collaborative Chain-of-Thought Reasoning [43.66966457772646]
MA-RAG orchestrates a collaborative set of specialized AI agents to tackle each stage of the RAG pipeline with task-aware reasoning.<n>Our design allows fine-grained control over information flow without any model fine-tuning.<n>This modular and reasoning-driven architecture enables MA-RAG to deliver robust, interpretable results.
arXiv Detail & Related papers (2025-05-26T15:05:18Z) - RAG-Gym: Systematic Optimization of Language Agents for Retrieval-Augmented Generation [43.50113345998687]
We introduce RAG-Gym, a comprehensive platform that explores three optimization dimensions: (1) prompt engineering, (2) actor tuning, and (3) critic training.<n>For prompt engineering, we propose Re$2$Search, a novel agent incorporating reflection reasoning that significantly outperforms standard prompts.<n>In actor tuning, we evaluate three popular post-training algorithms with fine-grained process supervision and identify direct preference optimization as the most effective.
arXiv Detail & Related papers (2025-02-19T18:56:03Z) - HawkBench: Investigating Resilience of RAG Methods on Stratified Information-Seeking Tasks [50.871243190126826]
HawkBench is a human-labeled, multi-domain benchmark designed to rigorously assess RAG performance.<n>By stratifying tasks based on information-seeking behaviors, HawkBench provides a systematic evaluation of how well RAG systems adapt to diverse user needs.
arXiv Detail & Related papers (2025-02-19T06:33:39Z) - Improving Retrieval-Augmented Generation through Multi-Agent Reinforcement Learning [51.54046200512198]
Retrieval-augmented generation (RAG) is extensively utilized to incorporate external, current knowledge into large language models.<n>A standard RAG pipeline may comprise several components, such as query rewriting, document retrieval, document filtering, and answer generation.<n>To overcome these challenges, we propose treating the RAG pipeline as a multi-agent cooperative task, with each component regarded as an RL agent.
arXiv Detail & Related papers (2025-01-25T14:24:50Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.<n>We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - SLA Management in Reconfigurable Multi-Agent RAG: A Systems Approach to Question Answering [0.0]
Real-world applications impose diverse Service Level Agreements (SLAs) and Quality of Service (QoS) requirements.<n>We present a systems-oriented approach to multi-agent RAG tailored for real-world Question Answering (QA) applications.
arXiv Detail & Related papers (2024-12-07T01:32:13Z) - AQA: Adaptive Question Answering in a Society of LLMs via Contextual Multi-Armed Bandit [59.10281630985958]
In question answering (QA), different questions can be effectively addressed with different answering strategies.
We develop a dynamic method that adaptively selects the most suitable QA strategy for each question.
Our experiments show that the proposed solution is viable for adaptive orchestration of a QA system with multiple modules.
arXiv Detail & Related papers (2024-09-20T12:28:18Z) - Unified Active Retrieval for Retrieval Augmented Generation [69.63003043712696]
In Retrieval-Augmented Generation (RAG), retrieval is not always helpful and applying it to every instruction is sub-optimal.
Existing active retrieval methods face two challenges: 1.
They usually rely on a single criterion, which struggles with handling various types of instructions.
They depend on specialized and highly differentiated procedures, and thus combining them makes the RAG system more complicated.
arXiv Detail & Related papers (2024-06-18T12:09:02Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.