RAG-Gym: Systematic Optimization of Language Agents for Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2502.13957v2
- Date: Sat, 31 May 2025 23:32:16 GMT
- Title: RAG-Gym: Systematic Optimization of Language Agents for Retrieval-Augmented Generation
- Authors: Guangzhi Xiong, Qiao Jin, Xiao Wang, Yin Fang, Haolin Liu, Yifan Yang, Fangyuan Chen, Zhixing Song, Dengyu Wang, Minjia Zhang, Zhiyong Lu, Aidong Zhang,
- Abstract summary: We introduce RAG-Gym, a comprehensive platform that explores three optimization dimensions: (1) prompt engineering, (2) actor tuning, and (3) critic training.<n>For prompt engineering, we propose Re$2$Search, a novel agent incorporating reflection reasoning that significantly outperforms standard prompts.<n>In actor tuning, we evaluate three popular post-training algorithms with fine-grained process supervision and identify direct preference optimization as the most effective.
- Score: 43.50113345998687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) has shown great promise for knowledge-intensive tasks and recently advanced with agentic RAG, where language agents engage in multi-round interactions with external knowledge sources for adaptive information retrieval. However, existing agentic RAG methods often depend on ad-hoc prompt engineering and lack a unified optimization framework. We introduce RAG-Gym, a comprehensive platform that systematically explores three optimization dimensions: (1) prompt engineering, (2) actor tuning, and (3) critic training. For prompt engineering, we propose Re$^2$Search, a novel agent incorporating reasoning reflection that significantly outperforms standard prompts. In actor tuning, we evaluate three popular post-training algorithms with fine-grained process supervision and identify direct preference optimization as the most effective. We further demonstrate that a trained critic can enhance inference by selecting higher-quality intermediate reasoning steps. Together, these findings lead to the optimized Re$^2$Search++ agent, which surpasses most recent methods like Search-R1 by a relative increase of 3.2% to 11.6% in average F1. Finally, we examine the impact of different reward sources and analyze scaling properties in training and inference, offering practical insights for agentic RAG optimization. The project homepage is available at https://rag-gym.github.io.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search [58.98450205734779]
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains.<n>Existing agent search methods suffer from three major limitations.<n>We introduce a comprehensive framework to address these challenges.
arXiv Detail & Related papers (2025-06-06T12:07:23Z) - KARE-RAG: Knowledge-Aware Refinement and Enhancement for RAG [63.82127103851471]
Retrieval-Augmented Generation (RAG) enables large language models to access broader knowledge sources.<n>We demonstrate that enhancing generative models' capacity to process noisy content is equally critical for robust performance.<n>We present KARE-RAG, which improves knowledge utilization through three key innovations.
arXiv Detail & Related papers (2025-06-03T06:31:17Z) - Process vs. Outcome Reward: Which is Better for Agentic RAG Reinforcement Learning [45.10424242207931]
Retrieval-augmented generation (RAG) enhances the text generation capabilities of large language models (LLMs)<n>We introduce a novel method ReasonRAG that automatically constructs RAG-ProGuide, a high-quality dataset providing process-level rewards for query generation, evidence extraction, and answer generation.<n>With the process-level policy optimization, the proposed framework empowers LLMs to autonomously invoke search, generate queries, extract relevant evidence, and produce final answers.
arXiv Detail & Related papers (2025-05-20T08:21:00Z) - Effective and Transparent RAG: Adaptive-Reward Reinforcement Learning for Decision Traceability [16.87554947089102]
We propose ARENA, a transparent RAG generator framework trained via reinforcement learning (RL) with our proposed rewards.<n>Based on the structured generation and adaptive reward calculation, our RL-based training enables the model to identify key evidence, perform structured reasoning, and generate answers with interpretable decision traces.
arXiv Detail & Related papers (2025-05-19T15:40:29Z) - Direct Retrieval-augmented Optimization: Synergizing Knowledge Selection and Language Models [83.8639566087953]
We propose a direct retrieval-augmented optimization framework, named DRO, that enables end-to-end training of two key components.<n>DRO alternates between two phases: (i) document permutation estimation and (ii) re-weighted, progressively improving RAG components.<n>Our theoretical analysis reveals that DRO is analogous to policy-gradient methods in reinforcement learning.
arXiv Detail & Related papers (2025-05-05T23:54:53Z) - eARCO: Efficient Automated Root Cause Analysis with Prompt Optimization [15.299667843493491]
Root cause analysis (RCA) for incidents in large-scale cloud systems is a complex, knowledge-intensive task.<n>Recent advancements in Large-Language Models (LLMs) have proven to be effective in solving different stages of the incident management lifecycle.<n>We leverage 'PromptWizard', a state-of-the-art prompt optimization technique, to automatically identify the best optimized prompt instruction.
arXiv Detail & Related papers (2025-04-15T08:10:32Z) - Self-Routing RAG: Binding Selective Retrieval with Knowledge Verbalization [97.72503890388866]
We propose Self-Routing RAG (SR-RAG), a novel framework that binds selective retrieval with knowledge verbalization.<n>SR-RAG enables an LLM to dynamically decide between external retrieval and verbalizing its own parametric knowledge.<n>We introduce dynamic knowledge source inference via nearest neighbor search to improve the accuracy of knowledge source decision.
arXiv Detail & Related papers (2025-04-01T17:59:30Z) - RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving [9.962031642362813]
Retrieval-augmented generation (RAG) is emerging as a popular approach for reliable LLM serving.<n>RAG is a structured abstraction that captures the wide range of RAG algorithms.<n> RAGO is a system optimization framework for efficient RAG serving.
arXiv Detail & Related papers (2025-03-18T18:58:13Z) - HawkBench: Investigating Resilience of RAG Methods on Stratified Information-Seeking Tasks [50.871243190126826]
HawkBench is a human-labeled, multi-domain benchmark designed to rigorously assess RAG performance.<n>By stratifying tasks based on information-seeking behaviors, HawkBench provides a systematic evaluation of how well RAG systems adapt to diverse user needs.
arXiv Detail & Related papers (2025-02-19T06:33:39Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3PO is a proxy-centric framework that facilitates communication between retrievers and large language models.<n>Our framework implements three specialized agents that collaboratively optimize the entire RAG pipeline.
arXiv Detail & Related papers (2025-02-10T07:04:32Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
This paper introduces an approach for training o1-like RAG models that retrieve and reason over relevant information step by step before generating the final answer.<n>Our proposed method, CoRAG, allows the model to dynamically reformulate the query based on the evolving state.
arXiv Detail & Related papers (2025-01-24T09:12:52Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
Large Language Models (LLMs) have revolutionized artificial intelligence (AI) by enabling human like text generation and natural language understanding.<n>Retrieval Augmented Generation (RAG) has emerged as a solution, enhancing LLMs by integrating real time data retrieval to provide contextually relevant responses.<n>Agentic Retrieval-Augmented Generation (RAG) transcends these limitations by embedding autonomous AI agents into the RAG pipeline.
arXiv Detail & Related papers (2025-01-15T20:40:25Z) - Large Language Model Can Be a Foundation for Hidden Rationale-Based Retrieval [12.83513794686623]
In this paper, we propose and study a more challenging type of retrieval task, called hidden rationale retrieval.
To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice.
We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC)
arXiv Detail & Related papers (2024-12-21T13:19:15Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.
We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Learning to Rank for Multiple Retrieval-Augmented Models through Iterative Utility Maximization [21.115495457454365]
This paper investigates the design of a unified search engine to serve multiple retrieval-augmented generation (RAG) agents.
We introduce an iterative approach where the search engine generates retrieval results for these RAG agents and gathers feedback on the quality of the retrieved documents during an offline phase.
We adapt this approach to an online setting, allowing the search engine to refine its behavior based on real-time individual agents feedback.
arXiv Detail & Related papers (2024-10-13T17:53:50Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.
With a focus on factual accuracy, we propose three novel metrics Completeness, Hallucination, and Irrelevance.
Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
retrieval-augmented generation (RAG) has attracted considerable research attention.
Existing RAG toolkits are often heavy and inflexibly, failing to meet the customization needs of researchers.
Our toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark datasets.
arXiv Detail & Related papers (2024-05-22T12:12:40Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented generation (RAG) can significantly improve the performance of language models (LMs)
RAGGED is a framework for analyzing RAG configurations across various document-based question answering tasks.
arXiv Detail & Related papers (2024-03-14T02:26:31Z) - Retrieval-Augmented Generation for AI-Generated Content: A Survey [38.50754568320154]
Retrieval-Augmented Generation (RAG) has emerged as a paradigm to address such challenges.
RAG introduces the information retrieval process, which enhances the generation process by retrieving relevant objects from available data stores.
In this paper, we comprehensively review existing efforts that integrate RAG technique into AIGC scenarios.
arXiv Detail & Related papers (2024-02-29T18:59:01Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
arXiv Detail & Related papers (2024-02-27T13:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.