Explaining GNN Explanations with Edge Gradients
- URL: http://arxiv.org/abs/2508.01048v1
- Date: Fri, 01 Aug 2025 20:05:22 GMT
- Title: Explaining GNN Explanations with Edge Gradients
- Authors: Jesse He, Akbar Rafiey, Gal Mishne, Yusu Wang,
- Abstract summary: We take a closer look at GNN explanations in two different settings: input-level explanations and layerwise explanations.<n>We establish the first theoretical connections between the popular perturbation-based and classical gradient-based methods.<n>We show how our theoretical results manifest in practice with experiments on both synthetic and real datasets.
- Score: 12.509536749135798
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the remarkable success of graph neural networks (GNNs) on graph-structured data has prompted a surge of methods for explaining GNN predictions. However, the state-of-the-art for GNN explainability remains in flux. Different comparisons find mixed results for different methods, with many explainers struggling on more complex GNN architectures and tasks. This presents an urgent need for a more careful theoretical analysis of competing GNN explanation methods. In this work we take a closer look at GNN explanations in two different settings: input-level explanations, which produce explanatory subgraphs of the input graph, and layerwise explanations, which produce explanatory subgraphs of the computation graph. We establish the first theoretical connections between the popular perturbation-based and classical gradient-based methods, as well as point out connections between other recently proposed methods. At the input level, we demonstrate conditions under which GNNExplainer can be approximated by a simple heuristic based on the sign of the edge gradients. In the layerwise setting, we point out that edge gradients are equivalent to occlusion search for linear GNNs. Finally, we demonstrate how our theoretical results manifest in practice with experiments on both synthetic and real datasets.
Related papers
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.<n>We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Structural Explanations for Graph Neural Networks using HSIC [21.929646888419914]
Graph neural networks (GNNs) are a type of neural model that tackle graphical tasks in an end-to-end manner.
The complicated dynamics of GNNs make it difficult to understand which parts of the graph features contribute more strongly to the predictions.
In this study, a flexible model agnostic explanation method is proposed to detect significant structures in graphs.
arXiv Detail & Related papers (2023-02-04T09:46:47Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
Subgraphs-enhanced Graph Neural Networks (SGNNs) have been introduced to enhance the expressive power of GNNs.
In this work, we adapt PGExplainer, one of the most recent explainers for GNNs, to SGNNs.
We show that our framework is successful in explaining the decision process of an SGNN on graph classification tasks.
arXiv Detail & Related papers (2022-09-16T13:39:10Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
Graph Neural Networks (GNNs) generalize the deep neural networks to graph-structured data.
GNNs lack explainability, which limits their adoption in scenarios that demand the transparency of models.
We propose a new framework which can find $K$-nearest labeled nodes for each unlabeled node to give explainable node classification.
arXiv Detail & Related papers (2021-08-26T22:45:11Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
We propose a method to improve the explanation quality of node classification tasks through aggregation of auxiliary explanations.
Applying SEEN does not require modification of a graph and can be used with diverse explainability techniques.
Experiments on matching motif-participating nodes from a given graph show great improvement in explanation accuracy of up to 12.71%.
arXiv Detail & Related papers (2021-06-16T03:04:46Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.