論文の概要: Disaggregated Health Data in LLMs: Evaluating Data Equity in the Context of Asian American Representation
- arxiv url: http://arxiv.org/abs/2508.01091v1
- Date: Fri, 01 Aug 2025 21:55:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-12 14:32:17.121822
- Title: Disaggregated Health Data in LLMs: Evaluating Data Equity in the Context of Asian American Representation
- Title(参考訳): LLMにおける非凝集型健康データ:アジア系アメリカ人表現の文脈におけるデータ等価性の評価
- Authors: Uvini Balasuriya Mudiyanselage, Bharat Jayprakash, Kookjin Lee, K. Hazel Kwon,
- Abstract要約: 大規模言語モデル (LLM) は情報検索に不可欠なツールである。
本研究は,アジア系アメリカ人における非民族集団の健康関連情報を抽出するLLMの能力について検討した。
- 参考スコア(独自算出の注目度): 3.368446688873154
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large language models (LLMs), such as ChatGPT and Claude, have emerged as essential tools for information retrieval, often serving as alternatives to traditional search engines. However, ensuring that these models provide accurate and equitable information tailored to diverse demographic groups remains an important challenge. This study investigates the capability of LLMs to retrieve disaggregated health-related information for sub-ethnic groups within the Asian American population, such as Korean and Chinese communities. Data disaggregation has been a critical practice in health research to address inequities, making it an ideal domain for evaluating representation equity in LLM outputs. We apply a suite of statistical and machine learning tools to assess whether LLMs deliver appropriately disaggregated and equitable information. By focusing on Asian American sub-ethnic groups, a highly diverse population often aggregated in traditional analyses; we highlight how LLMs handle complex disparities in health data. Our findings contribute to ongoing discussions about responsible AI, particularly in ensuring data equity in the outputs of LLM-based systems.
- Abstract(参考訳): ChatGPTやClaudeのような大規模言語モデル(LLM)は情報検索に不可欠なツールとして登場し、しばしば従来の検索エンジンに代わるものとして機能している。
しかし、これらのモデルが多様な人口集団に合わせた正確で公平な情報を提供することは、依然として重要な課題である。
本研究は、韓国や中国などアジア系アメリカ人の集団における、非人種的健康関連情報を抽出するLLMの能力について検討した。
データデアグリゲーションは、不平等に対処するために健康研究において重要な慣行であり、LLM出力における表現のエクイティを評価するのに理想的な領域である。
我々は,LLMが適切に非集約的かつ公平な情報を提供するかどうかを評価するために,統計的および機械学習ツール群を適用した。
アジア系アメリカ人の亜民族集団に焦点を合わせることで、非常に多様な人口が伝統的な分析に集約されることがしばしばあり、LSMが健康データにおける複雑な格差をどう扱うかを強調した。
我々の発見は、責任あるAIに関する継続的な議論、特にLLMベースのシステムのアウトプットにおけるデータエクイティの確保に寄与している。
関連論文リスト
- Addressing Bias in LLMs: Strategies and Application to Fair AI-based Recruitment [49.81946749379338]
この研究は、トランスフォーマーベースのシステムの能力を分析して、データに存在する人口統計バイアスを学習する。
最終ツールにおける偏りを緩和する手段として,学習パイプラインからの性別情報を削減するためのプライバシー向上フレームワークを提案する。
論文 参考訳(メタデータ) (2025-06-13T15:29:43Z) - MLLMs are Deeply Affected by Modality Bias [158.64371871084478]
MLLM(Multimodal Large Language Models)の最近の進歩は、テキストや画像などの多様なモダリティを統合する上で、有望な成果を示している。
MLLMはモダリティバイアスに強く影響され、しばしば言語に依存し、視覚入力のような他のモダリティを過小評価する。
本稿では,MLLMはモダリティバイアスの影響を強く受けており,様々なタスクにまたがってその発現を明らかにする。
論文 参考訳(メタデータ) (2025-05-24T11:49:31Z) - From Promising Capability to Pervasive Bias: Assessing Large Language Models for Emergency Department Triage [6.135648377533492]
大規模言語モデル (LLM) は, 臨床診断支援において有望であるが, トライアージへの応用は未定である。
救急部門トリアージにおけるLCMの能力について,2つの重要な側面を通して体系的に検討した。
我々は、継続した事前学習からテキスト内学習、機械学習アプローチまで、複数のLCMベースのアプローチを評価した。
論文 参考訳(メタデータ) (2025-04-22T21:11:47Z) - Evaluating the Performance of Large Language Models in Scientific Claim Detection and Classification [0.0]
本研究では,Twitterのようなプラットフォーム上での誤情報を緩和する革新的な手法として,LLM(Large Language Models)の有効性を評価する。
LLMは、従来の機械学習モデルに関連する広範なトレーニングと過度に適合する問題を回避し、事前訓練された適応可能なアプローチを提供する。
特定データセットを用いたLCMの性能の比較分析を行い、公衆衛生コミュニケーションへの応用のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-21T05:02:26Z) - Unveiling Performance Challenges of Large Language Models in Low-Resource Healthcare: A Demographic Fairness Perspective [7.1047384702030625]
我々は、6つの多様な医療タスクにまたがる3つの一般的な学習フレームワークを用いて、最先端の大規模言語モデル(LLM)を評価した。
LLMを現実の医療タスクに適用する上での重大な課題と、人口統計群全体での永続的公平性の問題を見出した。
論文 参考訳(メタデータ) (2024-11-30T18:52:30Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的バイアスの問題に対処する。i)多元的社会的概念(CMSC)を用いた包括的対実的データセットの導入,i)アンチステレオタイプデバイアス戦略(ASD)を提案する。
論文 参考訳(メタデータ) (2024-08-13T02:08:32Z) - Data-Centric AI in the Age of Large Language Models [51.20451986068925]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。
本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。
データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (2024-06-20T16:34:07Z) - Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias [3.455189439319919]
大規模な言語モデル(LLM)におけるバイアスと実世界の知識を評価するための最初のベンチマークフレームワークであるCross-Careを紹介する。
ThePile$のような事前学習コーパスに埋め込まれた人口統計バイアスがLLMの出力にどのように影響するかを評価する。
以上の結果から, LLMの病状有病率と, 集団間での実際の病状有病率との相違が明らかとなった。
論文 参考訳(メタデータ) (2024-05-09T02:33:14Z) - Better to Ask in English: Cross-Lingual Evaluation of Large Language
Models for Healthcare Queries [31.82249599013959]
大規模言語モデル(LLM)は、一般大衆が情報にアクセスし消費する方法を変えつつある。
LLMは印象的な言語理解と生成能力を示しているが、その安全性に関する懸念は依然として最重要である。
これらのLLMが非英語の文脈でどのように機能するかは、まだ不明である。
論文 参考訳(メタデータ) (2023-10-19T20:02:40Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Auditing Algorithmic Fairness in Machine Learning for Health with
Severity-Based LOGAN [70.76142503046782]
臨床予測タスクにおいて,局所バイアスを自動検出するSLOGANを用いて,機械学習ベースの医療ツールを補足することを提案する。
LOGANは、患者の重症度と過去の医療史における集団バイアス検出を文脈化することにより、既存のツールであるLOcal Group biAs detectioNに適応する。
SLOGANは, クラスタリング品質を維持しながら, 患者群の75%以上において, SLOGANよりも高い公平性を示す。
論文 参考訳(メタデータ) (2022-11-16T08:04:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。