論文の概要: MASIV: Toward Material-Agnostic System Identification from Videos
- arxiv url: http://arxiv.org/abs/2508.01112v1
- Date: Fri, 01 Aug 2025 23:23:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.717154
- Title: MASIV: Toward Material-Agnostic System Identification from Videos
- Title(参考訳): MASIV:映像からの物質非依存システム同定に向けて
- Authors: Yizhou Zhao, Haoyu Chen, Chunjiang Liu, Zhenyang Li, Charles Herrmann, Junhwa Hur, Yinxiao Li, Ming-Hsuan Yang, Bhiksha Raj, Min Xu,
- Abstract要約: MASIVは、物質に依存しないシステム識別のためのビジョンベースのフレームワークである。
学習可能なニューラルモデルを採用し、シーン固有の物質を事前に仮定することなく、オブジェクトのダイナミクスを推定する。
幾何的精度、レンダリング品質、一般化能力において最先端の性能を達成する。
- 参考スコア(独自算出の注目度): 76.36666848173141
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: System identification from videos aims to recover object geometry and governing physical laws. Existing methods integrate differentiable rendering with simulation but rely on predefined material priors, limiting their ability to handle unknown ones. We introduce MASIV, the first vision-based framework for material-agnostic system identification. Unlike existing approaches that depend on hand-crafted constitutive laws, MASIV employs learnable neural constitutive models, inferring object dynamics without assuming a scene-specific material prior. However, the absence of full particle state information imposes unique challenges, leading to unstable optimization and physically implausible behaviors. To address this, we introduce dense geometric guidance by reconstructing continuum particle trajectories, providing temporally rich motion constraints beyond sparse visual cues. Comprehensive experiments show that MASIV achieves state-of-the-art performance in geometric accuracy, rendering quality, and generalization ability.
- Abstract(参考訳): ビデオからのシステム識別は、オブジェクトの幾何学を回復し、物理法則を管理することを目的としている。
既存の方法は、シミュレーションと差別化可能なレンダリングを統合するが、事前に定義された素材の優先順位に依存し、未知のものを扱う能力を制限する。
物質に依存しないシステム識別のための視覚ベースの最初のフレームワークであるMASIVを紹介する。
手作り構成法則に依存する既存のアプローチとは異なり、MASIVは学習可能なニューラル構成モデルを採用し、シーン固有の物質を事前に仮定することなく物体のダイナミクスを推定する。
しかし、完全な粒子状態情報がないため、不安定な最適化と物理的に不可解な振る舞いが生じる。
そこで本研究では,連続的な粒子軌道を再構成して高密度な幾何学的ガイダンスを導入する。
総合的な実験により、MASIVは幾何精度、レンダリング品質、一般化能力において最先端の性能を達成することが示された。
関連論文リスト
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
本稿では、物理シミュレーションを利用した新しいフレームワークであるPhysMotionを紹介し、一つの画像と入力条件から生成された中間3次元表現をガイドする。
我々のアプローチは、従来のデータ駆動生成モデルの限界に対処し、より一貫した物理的に妥当な動きをもたらす。
論文 参考訳(メタデータ) (2024-11-26T07:59:11Z) - PhysFlow: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation [9.306758077479472]
PhysFlowは、マルチモーダル基礎モデルとビデオ拡散を利用して、強化された4次元ダイナミックシーンシミュレーションを実現する新しいアプローチである。
この統合フレームワークは、現実世界のシナリオにおける動的相互作用の正確な予測と現実的なシミュレーションを可能にする。
論文 参考訳(メタデータ) (2024-11-21T18:55:23Z) - Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems [49.11170948406405]
本研究では,単一のビデオから既知の連続制御方程式の物理パラメータを推定する教師なし手法を提案する。
Delfys75は5種類の動的システムのための75本のビデオからなる実世界のデータセットだ。
論文 参考訳(メタデータ) (2024-10-02T09:44:54Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - gradSim: Differentiable simulation for system identification and
visuomotor control [66.37288629125996]
本稿では,微分可能マルチフィジカルシミュレーションと微分可能レンダリングを活用し,3次元監督への依存を克服するフレームワークであるgradsimを提案する。
当社の統合グラフは、状態ベースの(3D)監督に頼ることなく、挑戦的なバイスモメータ制御タスクで学習を可能にします。
論文 参考訳(メタデータ) (2021-04-06T16:32:01Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
人工システムの鍵となる能力は、オブジェクト間の物理的相互作用を理解し、状況の将来的な結果を予測することである。
この能力は直感的な物理学と呼ばれ、近年注目されており、ビデオシーケンスからこれらの物理規則を学ぶためのいくつかの方法が提案されている。
論文 参考訳(メタデータ) (2020-04-30T19:35:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。