論文の概要: Hard Encoding of Physics for Learning Spatiotemporal Dynamics
- arxiv url: http://arxiv.org/abs/2105.00557v1
- Date: Sun, 2 May 2021 21:40:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-04 14:16:01.273007
- Title: Hard Encoding of Physics for Learning Spatiotemporal Dynamics
- Title(参考訳): 時空間ダイナミクス学習のための物理のハードエンコーディング
- Authors: Chengping Rao, Hao Sun, Yang Liu
- Abstract要約: 既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
- 参考スコア(独自算出の注目度): 8.546520029145853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling nonlinear spatiotemporal dynamical systems has primarily relied on
partial differential equations (PDEs). However, the explicit formulation of
PDEs for many underexplored processes, such as climate systems, biochemical
reaction and epidemiology, remains uncertain or partially unknown, where very
limited measurement data is yet available. To tackle this challenge, we propose
a novel deep learning architecture that forcibly encodes known physics
knowledge to facilitate learning in a data-driven manner. The coercive encoding
mechanism of physics, which is fundamentally different from the penalty-based
physics-informed learning, ensures the network to rigorously obey given
physics. Instead of using nonlinear activation functions, we propose a novel
elementwise product operation to achieve the nonlinearity of the model.
Numerical experiment demonstrates that the resulting physics-encoded learning
paradigm possesses remarkable robustness against data noise/scarcity and
generalizability compared with some state-of-the-art models for data-driven
modeling.
- Abstract(参考訳): 非線形時空間力学系のモデリングは主に偏微分方程式(PDE)に依存している。
しかし、気候システム、生化学反応、疫学など、未調査の多くのプロセスにおけるPDEの明示的な定式化は、非常に限られた測定データしか得られていない、不確実または部分的には分かっていない。
この課題に取り組むために,既知の物理知識を強制的にエンコードし,データ駆動型学習を容易にする新しいディープラーニングアーキテクチャを提案する。
物理の強制的符号化機構は、ペナルティに基づく物理情報学習とは根本的に異なるが、ネットワークが与えられた物理に厳格に従うことを保証している。
非線形アクティベーション関数の代わりに、モデルの非線形性を達成するための新しい要素的積演算を提案する。
数値実験により、結果として得られる物理エンコード学習パラダイムは、データ駆動モデリングのための最先端モデルと比較して、データノイズ/スカルシティと一般化性に対して著しく頑健であることが示される。
関連論文リスト
- Adapting Physics-Informed Neural Networks To Optimize ODEs in Mosquito Population Dynamics [0.019972837513980313]
本稿では,ODE システムの前方および逆問題に対していくつかの改良を加えた PINN フレームワークを提案する。
この枠組みは、蚊の常微分方程式によって生じる勾配不均衡と硬い問題に取り組む。
予備的な結果は、物理インフォームド機械学習が生態システムの研究を前進させる大きな可能性を秘めていることを示している。
論文 参考訳(メタデータ) (2024-06-07T17:40:38Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Multi-Objective Physics-Guided Recurrent Neural Networks for Identifying
Non-Autonomous Dynamical Systems [0.0]
制御対象の非自律系をモデル化するための物理誘導型ハイブリッド手法を提案する。
これはリカレントニューラルネットワークによって拡張され、洗練された多目的戦略を使用してトレーニングされる。
実データを用いた実験により,物理モデルと比較して精度が大幅に向上した。
論文 参考訳(メタデータ) (2022-04-27T14:33:02Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
時間依存偏微分方程式を解くための物理インフォームド・フレームワークを提案する。
我々のモデルは離散コサイン変換を用いて空間的および反復的なニューラルネットワークを符号化する。
ナヴィエ・ストークス方程式に対するテイラー・グリーン渦解の実験結果を示す。
論文 参考訳(メタデータ) (2022-02-24T20:46:52Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
物理構造を符号化するディープラーニングフレームワークが,PDEシステム体制に関する様々な問題に適用可能であることを示す。
物理を符号化する結果の学習パラダイムは、広範囲な数値実験により、高い精度、堅牢性、解釈可能性、一般化可能性を示す。
論文 参考訳(メタデータ) (2021-06-09T03:02:20Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Augmenting Physical Models with Deep Networks for Complex Dynamics
Forecasting [34.61959169976758]
APHYNITYは、深層データ駆動モデルを持つ微分方程式によって記述された不完全な物理力学を増大させる原理的なアプローチである。
これは、動的を2つのコンポーネントに分解することで構成されます。物理コンポーネントは、事前の知識を持つダイナミクスを、データ駆動コンポーネントは、物理モデルのエラーを説明します。
論文 参考訳(メタデータ) (2020-10-09T09:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。