論文の概要: Object Affordance Recognition and Grounding via Multi-scale Cross-modal Representation Learning
- arxiv url: http://arxiv.org/abs/2508.01184v1
- Date: Sat, 02 Aug 2025 04:14:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.746145
- Title: Object Affordance Recognition and Grounding via Multi-scale Cross-modal Representation Learning
- Title(参考訳): マルチスケール・クロスモーダル表現学習による物体収差認識とグラウンド化
- Authors: Xinhang Wan, Dongqiang Gou, Xinwang Liu, En Zhu, Xuming He,
- Abstract要約: Embodied AIの中核的な問題は、人間がしているように、観察からオブジェクト操作を学ぶことだ。
本稿では,3D表現の可利用性を学習し,段階的推論戦略を採用する新しい手法を提案する。
提案手法の有効性を実証し,アベイランスグラウンドと分類の両面での性能向上を示した。
- 参考スコア(独自算出の注目度): 64.32618490065117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A core problem of Embodied AI is to learn object manipulation from observation, as humans do. To achieve this, it is important to localize 3D object affordance areas through observation such as images (3D affordance grounding) and understand their functionalities (affordance classification). Previous attempts usually tackle these two tasks separately, leading to inconsistent predictions due to lacking proper modeling of their dependency. In addition, these methods typically only ground the incomplete affordance areas depicted in images, failing to predict the full potential affordance areas, and operate at a fixed scale, resulting in difficulty in coping with affordances significantly varying in scale with respect to the whole object. To address these issues, we propose a novel approach that learns an affordance-aware 3D representation and employs a stage-wise inference strategy leveraging the dependency between grounding and classification tasks. Specifically, we first develop a cross-modal 3D representation through efficient fusion and multi-scale geometric feature propagation, enabling inference of full potential affordance areas at a suitable regional scale. Moreover, we adopt a simple two-stage prediction mechanism, effectively coupling grounding and classification for better affordance understanding. Experiments demonstrate the effectiveness of our method, showing improved performance in both affordance grounding and classification.
- Abstract(参考訳): Embodied AIの中核的な問題は、人間がしているように、観察からオブジェクト操作を学ぶことだ。
これを実現するためには、画像(3Dアベイランスグラウンド)などの観察を通して3Dオブジェクトのアベイランス領域をローカライズし、それらの機能(アフォーダンス分類)を理解することが重要である。
従来の試みは通常、これらの2つのタスクを別々に対処するが、依存関係の適切なモデリングが欠如しているため、一貫性のない予測につながる。
さらに、これらの手法は一般的に画像に表される不完全な空き領域のみを根拠として、潜在的な空き領域の予測に失敗し、一定のスケールで運用することで、対象物全体に対して大きく異なる空き領域への対処が困難となる。
これらの課題に対処するため,我々は,手頃な3D表現を学習し,グラウンド処理と分類タスクの依存性を利用した段階的推論手法を提案する。
具体的には、まず、効率的な融合と多スケールの幾何的特徴伝搬により、適切な地域規模で完全な潜在可測領域を推定できる3次元のクロスモーダル表現を開発する。
さらに, 簡易な2段階予測機構を導入し, 効果的に接地と分類を結合することで, 精度の向上を図る。
提案手法の有効性を実証し,アベイランスグラウンドと分類の両面での性能向上を示した。
関連論文リスト
- Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Beyond the Contact: Discovering Comprehensive Affordance for 3D Objects from Pre-trained 2D Diffusion Models [8.933560282929726]
我々はComprehensive Affordance(ComA)という新しい余裕表現を導入する。
3Dオブジェクトメッシュが与えられたとき、ComAは相互作用する人間のメッシュにおける相対配向と頂点の近接の分布をモデル化する。
ComAは、連絡先ベースの価格のモデリングにおいて、人間のアノテーションに依存している競争相手よりも優れていることを実証する。
論文 参考訳(メタデータ) (2024-01-23T18:59:59Z) - 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic
Segmentation [92.17700318483745]
合成訓練された2Dセマンティックセマンティックセグメンテーションネットワークから高レベル特徴情報を蒸留するアイデアに基づく画像誘導ネットワーク(IGNet)を提案する。
IGNetは、ScribbleKITTI上の弱い教師付きLiDARセマンティックセマンティックセグメンテーションの最先端の結果を達成し、8%のラベル付きポイントしか持たない完全な教師付きトレーニングに対して最大98%のパフォーマンスを誇っている。
論文 参考訳(メタデータ) (2023-11-27T07:57:29Z) - GS-Pose: Category-Level Object Pose Estimation via Geometric and
Semantic Correspondence [5.500735640045456]
カテゴリーレベルのポーズ推定は、コンピュータビジョンやロボット工学における多くの潜在的な応用において難しい課題である。
本稿では,事前学習した基礎モデルから得られる幾何学的特徴と意味的特徴の両方を活用することを提案する。
これは、セマンティックな特徴がオブジェクトのテクスチャや外観に対して堅牢であるため、以前のメソッドよりもトレーニングするデータを大幅に少なくする。
論文 参考訳(メタデータ) (2023-11-23T02:35:38Z) - Grounding 3D Object Affordance from 2D Interactions in Images [128.6316708679246]
接地した3Dオブジェクトは、3D空間内のオブジェクトの'アクション可能性'領域を見つけようとする。
人間は、実演画像やビデオを通じて、物理的世界の物体の余裕を知覚する能力を持っている。
我々は、異なるソースからのオブジェクトの領域的特徴を整合させる、インタラクション駆動の3D Affordance Grounding Network (IAG) を考案する。
論文 参考訳(メタデータ) (2023-03-18T15:37:35Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
ラベル付きデータが豊富である場合, 単一画像からの3次元ポーズ推定に対する改良されたアプローチは, 極めて効果的である。
最近の注目の多くは、セミと(あるいは)弱い教師付き学習に移行している。
本稿では,多視点の幾何学的制約を,識別可能な三角測量を用いて課し,ラベルがない場合の自己監督の形式として用いることを提案する。
論文 参考訳(メタデータ) (2022-03-29T19:11:54Z) - Sim2Real Object-Centric Keypoint Detection and Description [40.58367357980036]
キーポイントの検出と記述はコンピュータビジョンにおいて中心的な役割を果たす。
対象中心の定式化を提案し、各関心点が属する対象をさらに特定する必要がある。
我々はシミュレーションで訓練されたモデルを現実のアプリケーションに一般化できるsim2realコントラスト学習機構を開発した。
論文 参考訳(メタデータ) (2022-02-01T15:00:20Z) - Combining Semantic Guidance and Deep Reinforcement Learning For
Generating Human Level Paintings [22.889059874754242]
脳卒中に基づく非フォトリアリスティック画像の生成は、コンピュータビジョンコミュニティにおいて重要な問題である。
従来の手法は、前景オブジェクトの位置、規模、正当性にほとんど変化のないデータセットに限られていた。
本研究では,1)前景と背景の筆画の区別を学習するための2段階の塗装手順を備えたセマンティック・ガイダンス・パイプラインを提案する。
論文 参考訳(メタデータ) (2020-11-25T09:00:04Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
マルチパーソン・ヒューマン・ポーズ推定のためのデプロイフレンドリーで高速なボトムアップ・フレームワークを提案する。
我々は,人物の位置を対応する3Dポーズ表現と統一する,多人数の3Dポーズのニューラル表現を採用する。
ペア化された2Dまたは3Dポーズアノテーションが利用できない実用的な配置パラダイムを提案する。
論文 参考訳(メタデータ) (2020-08-04T07:54:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。