Multi-Operator Few-Shot Learning for Generalization Across PDE Families
- URL: http://arxiv.org/abs/2508.01211v1
- Date: Sat, 02 Aug 2025 06:00:01 GMT
- Title: Multi-Operator Few-Shot Learning for Generalization Across PDE Families
- Authors: Yile Li, Shandian Zhe,
- Abstract summary: We propose a unified framework for multi-operator few-shot learning, which aims to generalize to unseen PDE operators.<n>Our method integrates three key components: (i) multi-task self-supervised pretraining of a shared Fourier Neural Operator (FNO) encoder, (ii) text-conditioned operator embeddings derived from statistical summaries of input-output fields, and (iii) memory-augmented multimodal prompting.<n> Experiments on PDE benchmarks, including Darcy Flow and Navier Stokes variants, demonstrate that our model outperforms existing operator learning baselines in few-shot generalization.
- Score: 17.225653683970393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning solution operators for partial differential equations (PDEs) has become a foundational task in scientific machine learning. However, existing neural operator methods require abundant training data for each specific PDE and lack the ability to generalize across PDE families. In this work, we propose MOFS: a unified multimodal framework for multi-operator few-shot learning, which aims to generalize to unseen PDE operators using only a few demonstration examples. Our method integrates three key components: (i) multi-task self-supervised pretraining of a shared Fourier Neural Operator (FNO) encoder to reconstruct masked spatial fields and predict frequency spectra, (ii) text-conditioned operator embeddings derived from statistical summaries of input-output fields, and (iii) memory-augmented multimodal prompting with gated fusion and cross-modal gradient-based attention. We adopt a two-stage training paradigm that first learns prompt-conditioned inference on seen operators and then applies end-to-end contrastive fine-tuning to align latent representations across vision, frequency, and text modalities. Experiments on PDE benchmarks, including Darcy Flow and Navier Stokes variants, demonstrate that our model outperforms existing operator learning baselines in few-shot generalization. Extensive ablations validate the contributions of each modality and training component. Our approach offers a new foundation for universal and data-efficient operator learning across scientific domains.
Related papers
- On Domain-Adaptive Post-Training for Multimodal Large Language Models [72.67107077850939]
This paper systematically investigates domain adaptation of MLLMs via post-training.<n>We focus on data synthesis, training pipeline, and task evaluation.<n>We conduct experiments in high-impact domains such as biomedicine, food, and remote sensing.
arXiv Detail & Related papers (2024-11-29T18:42:28Z) - DeepONet as a Multi-Operator Extrapolation Model: Distributed Pretraining with Physics-Informed Fine-Tuning [6.635683993472882]
We propose a novel fine-tuning method to achieve multi-operator learning.
Our approach combines distributed learning to integrate data from various operators in pre-training, while physics-informed methods enable zero-shot fine-tuning.
arXiv Detail & Related papers (2024-11-11T18:58:46Z) - LeMON: Learning to Learn Multi-Operator Networks [0.6554326244334868]
Single-operator learning involves training a deep neural network to learn a specific operator.<n>Recent work in multi-operator learning uses an operator embedding structure to train a single neural network on data from multiple operators.<n>We propose pretraining and fine-tuning strategies for solving PDEs using multi-operator learning.
arXiv Detail & Related papers (2024-08-28T23:20:03Z) - XTrack: Multimodal Training Boosts RGB-X Video Object Trackers [88.72203975896558]
It is crucial to ensure that knowledge gained from multimodal sensing is effectively shared.<n>Similar samples across different modalities have more knowledge to share than otherwise.<n>We propose a method for RGB-X tracker during inference, with an average +3% precision improvement over the current SOTA.
arXiv Detail & Related papers (2024-05-28T03:00:58Z) - Towards a Foundation Model for Partial Differential Equations: Multi-Operator Learning and Extrapolation [4.286691905364396]
We introduce a multi-modal foundation model for scientific problems, named PROSE-PDE.<n>Our model is a multi-operator learning approach which can predict future states of systems while concurrently learning the underlying governing equations of the physical system.
arXiv Detail & Related papers (2024-04-18T17:34:20Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - DEPHN: Different Expression Parallel Heterogeneous Network using virtual
gradient optimization for Multi-task Learning [1.0705399532413615]
Recommendation system algorithm based on multi-task learning (MTL) is the major method for Internet operators to understand users and predict their behaviors.
Traditional models use shared-bottom models and gating experts to realize shared representation learning and information differentiation.
We propose an Different Expression Parallel Heterogeneous Network (DEPHN) to model multiple tasks simultaneously.
arXiv Detail & Related papers (2023-07-24T04:29:00Z) - Beyond Just Vision: A Review on Self-Supervised Representation Learning
on Multimodal and Temporal Data [10.006890915441987]
Popularity of self-supervised learning is driven by the fact that traditional models typically require a huge amount of well-annotated data for training.
Self-supervised methods have been introduced to improve the efficiency of training data through discriminative pre-training of models.
We aim to provide the first comprehensive review of multimodal self-supervised learning methods for temporal data.
arXiv Detail & Related papers (2022-06-06T04:59:44Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - DiVA: Diverse Visual Feature Aggregation for Deep Metric Learning [83.48587570246231]
Visual Similarity plays an important role in many computer vision applications.
Deep metric learning (DML) is a powerful framework for learning such similarities.
We propose and study multiple complementary learning tasks, targeting conceptually different data relationships.
We learn a single model to aggregate their training signals, resulting in strong generalization and state-of-the-art performance.
arXiv Detail & Related papers (2020-04-28T12:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.