DEPHN: Different Expression Parallel Heterogeneous Network using virtual
gradient optimization for Multi-task Learning
- URL: http://arxiv.org/abs/2307.12519v1
- Date: Mon, 24 Jul 2023 04:29:00 GMT
- Title: DEPHN: Different Expression Parallel Heterogeneous Network using virtual
gradient optimization for Multi-task Learning
- Authors: Menglin Kong, Ri Su, Shaojie Zhao, Muzhou Hou
- Abstract summary: Recommendation system algorithm based on multi-task learning (MTL) is the major method for Internet operators to understand users and predict their behaviors.
Traditional models use shared-bottom models and gating experts to realize shared representation learning and information differentiation.
We propose an Different Expression Parallel Heterogeneous Network (DEPHN) to model multiple tasks simultaneously.
- Score: 1.0705399532413615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation system algorithm based on multi-task learning (MTL) is the
major method for Internet operators to understand users and predict their
behaviors in the multi-behavior scenario of platform. Task correlation is an
important consideration of MTL goals, traditional models use shared-bottom
models and gating experts to realize shared representation learning and
information differentiation. However, The relationship between real-world tasks
is often more complex than existing methods do not handle properly sharing
information. In this paper, we propose an Different Expression Parallel
Heterogeneous Network (DEPHN) to model multiple tasks simultaneously. DEPHN
constructs the experts at the bottom of the model by using different feature
interaction methods to improve the generalization ability of the shared
information flow. In view of the model's differentiating ability for different
task information flows, DEPHN uses feature explicit mapping and virtual
gradient coefficient for expert gating during the training process, and
adaptively adjusts the learning intensity of the gated unit by considering the
difference of gating values and task correlation. Extensive experiments on
artificial and real-world datasets demonstrate that our proposed method can
capture task correlation in complex situations and achieve better performance
than baseline models\footnote{Accepted in IJCNN2023}.
Related papers
- Modeling Output-Level Task Relatedness in Multi-Task Learning with Feedback Mechanism [7.479892725446205]
Multi-task learning (MTL) is a paradigm that simultaneously learns multiple tasks by sharing information at different levels.
We introduce a posteriori information into the model, considering that different tasks may produce correlated outputs with mutual influences.
We achieve this by incorporating a feedback mechanism into MTL models, where the output of one task serves as a hidden feature for another task.
arXiv Detail & Related papers (2024-04-01T03:27:34Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Concrete Subspace Learning based Interference Elimination for Multi-task
Model Fusion [86.6191592951269]
Merging models fine-tuned from common extensively pretrained large model but specialized for different tasks has been demonstrated as a cheap and scalable strategy to construct a multitask model that performs well across diverse tasks.
We propose the CONtinuous relaxation dis (Concrete) subspace learning method to identify a common lowdimensional subspace and utilize its shared information track interference problem without sacrificing performance.
arXiv Detail & Related papers (2023-12-11T07:24:54Z) - The Effect of Diversity in Meta-Learning [79.56118674435844]
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples.
Recent studies show that task distribution plays a vital role in the model's performance.
We study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms.
arXiv Detail & Related papers (2022-01-27T19:39:07Z) - Modular Networks Prevent Catastrophic Interference in Model-Based
Multi-Task Reinforcement Learning [0.8883733362171032]
We study whether model-based multi-task reinforcement learning benefits from shared dynamics models in a similar way model-free methods do from shared policy networks.
Using a single dynamics model, we see clear evidence of task confusion and reduced performance.
As a remedy, enforcing an internal structure for the learned dynamics model by training isolated sub-networks for each task notably improves performance.
arXiv Detail & Related papers (2021-11-15T12:31:31Z) - Rethinking Hard-Parameter Sharing in Multi-Task Learning [20.792654758645302]
Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy.
The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task.
Using separate bottom-layer parameters could achieve significantly better performance than the common practice.
arXiv Detail & Related papers (2021-07-23T17:26:40Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.