論文の概要: Defending Against Beta Poisoning Attacks in Machine Learning Models
- arxiv url: http://arxiv.org/abs/2508.01276v1
- Date: Sat, 02 Aug 2025 09:13:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.801094
- Title: Defending Against Beta Poisoning Attacks in Machine Learning Models
- Title(参考訳): 機械学習モデルにおけるベータ攻撃に対する防御
- Authors: Nilufer Gulciftci, M. Emre Gursoy,
- Abstract要約: 機械学習(ML)モデルのトレーニングデータセットを敵に操作する攻撃は、MLセキュリティに重大な脅威をもたらす。
我々は,kNN Proximity-Based Defense (KPB), Neighborhood Class Comparison (NCC), Clustering-Based Defense (CBD), Mean Distance Threshold (MDT)の4つの防衛戦略を提案する。
MNISTとCIFAR-10データセットを用いた実験的評価では、KPBとMDTは完全な精度とF1スコアを達成でき、CBDとNCCは強力な防御能力も提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Poisoning attacks, in which an attacker adversarially manipulates the training dataset of a machine learning (ML) model, pose a significant threat to ML security. Beta Poisoning is a recently proposed poisoning attack that disrupts model accuracy by making the training dataset linearly nonseparable. In this paper, we propose four defense strategies against Beta Poisoning attacks: kNN Proximity-Based Defense (KPB), Neighborhood Class Comparison (NCC), Clustering-Based Defense (CBD), and Mean Distance Threshold (MDT). The defenses are based on our observations regarding the characteristics of poisoning samples generated by Beta Poisoning, e.g., poisoning samples have close proximity to one another, and they are centered near the mean of the target class. Experimental evaluations using MNIST and CIFAR-10 datasets demonstrate that KPB and MDT can achieve perfect accuracy and F1 scores, while CBD and NCC also provide strong defensive capabilities. Furthermore, by analyzing performance across varying parameters, we offer practical insights regarding defenses' behaviors under varying conditions.
- Abstract(参考訳): 攻撃者が機械学習(ML)モデルのトレーニングデータセットを逆さまに操作する攻撃は、MLセキュリティに重大な脅威をもたらす。
Beta Poisoningは最近提案された毒殺攻撃で、トレーニングデータセットを線形に分離不能にすることでモデルの精度を損なう。
本稿では,kNN Proximity-Based Defense(KPB),Neighborhood Class Comparison(NCC),Clustering-Based Defense(CBD),Mean Distance Threshold(MDT)の4つの攻撃対策を提案する。
本研究は,Beta Poisoningが生成する毒物の種類,例えば,毒物は互いに近接しており,標的クラスの平均付近に集中している。
MNIST と CIFAR-10 データセットを用いた実験により、KPB と MDT は完全精度と F1 スコアを達成でき、CBD と NCC は強力な防御能力も提供することを示した。
さらに, 各種パラメータ間での性能を解析することにより, 各種条件下での防衛行動に関する実践的な知見を提供する。
関連論文リスト
- Have You Poisoned My Data? Defending Neural Networks against Data Poisoning [0.393259574660092]
本稿では,トランスファー学習環境における有毒なデータポイントの検出とフィルタリングを行う新しい手法を提案する。
有効毒は, 特徴ベクトル空間の清浄点とよく区別できることを示す。
提案手法は, 防衛率と最終訓練モデルの性能において, 既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-20T11:50:16Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - APBench: A Unified Benchmark for Availability Poisoning Attacks and
Defenses [21.633448874100004]
APBenchは、敵の毒殺攻撃の有効性を評価するためのベンチマークである。
APBenchは9つの最先端のアベイラビリティ・アベイラビリティ・アタック、8つの防御アルゴリズム、および4つの従来のデータ拡張技術で構成されている。
われわれの結果は、個人のプライバシーを守るために、既存の攻撃が不適切であることを明らかにしている。
論文 参考訳(メタデータ) (2023-08-07T02:30:47Z) - On Practical Aspects of Aggregation Defenses against Data Poisoning
Attacks [58.718697580177356]
悪意のあるトレーニングサンプルを持つディープラーニングモデルに対する攻撃は、データ中毒として知られている。
データ中毒に対する防衛戦略の最近の進歩は、認証された毒性の堅牢性を達成するためのアグリゲーション・スキームの有効性を強調している。
ここでは、Deep Partition Aggregation(ディープ・パーティション・アグリゲーション・アグリゲーション)、代表的アグリゲーション・ディフェンス(アグリゲーション・ディフェンス)に焦点を当て、効率、性能、堅牢性など、その実践的側面を評価する。
論文 参考訳(メタデータ) (2023-06-28T17:59:35Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - De-Pois: An Attack-Agnostic Defense against Data Poisoning Attacks [17.646155241759743]
De-Poisは、中毒攻撃に対する攻撃に依存しない防御です。
我々は,4種類の毒殺攻撃を実施,5種類の典型的な防御方法を用いてデポアを評価する。
論文 参考訳(メタデータ) (2021-05-08T04:47:37Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z) - Defending Regression Learners Against Poisoning Attacks [25.06658793731661]
N-LIDと呼ばれる新しい局所固有次元(LID)に基づく測度を導入し,その近傍データ点のLIDの局所偏差を測定する。
N-LIDは、正常なサンプルから有毒なサンプルを識別し、攻撃者を仮定しないN-LIDベースの防御アプローチを提案する。
提案した防御機構は,予測精度(未固定リッジモデルと比較して最大76%低いMSE)とランニング時間において,より優れることを示す。
論文 参考訳(メタデータ) (2020-08-21T03:02:58Z) - Deep Partition Aggregation: Provable Defense against General Poisoning
Attacks [136.79415677706612]
アドリアリン中毒は、分類器の試験時間挙動を損なうために訓練データを歪ませる。
毒殺攻撃に対する2つの新たな防御策を提案する。
DPAは一般的な中毒脅威モデルに対する認証された防御である。
SS-DPAはラベルフリップ攻撃に対する認証された防御である。
論文 参考訳(メタデータ) (2020-06-26T03:16:31Z) - Stochastic Security: Adversarial Defense Using Long-Run Dynamics of
Energy-Based Models [82.03536496686763]
敵対的攻撃に対するディープ・ネットワークの脆弱性は、認識とセキュリティの両方の観点から、ディープ・ラーニングの中心的な問題である。
我々は,自然学習型分類器の保護に重点を置き,マルコフ・チェイン・モンテカルロ (MCMC) とエネルギーベースモデル (EBM) を併用して敵の浄化を行った。
本研究は,1)現実的な長期MCMCサンプルを用いたEMMの訓練方法の改善,2)防衛の理論的曖昧さを解消する期待・オフバー・トランスフォーメーション(EOT)ディフェンス,3)自然に訓練された分類器と競争的ディフェンスのための最先端の対人ディフェンス,である。
論文 参考訳(メタデータ) (2020-05-27T17:53:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。