Discovering Bias Associations through Open-Ended LLM Generations
- URL: http://arxiv.org/abs/2508.01412v1
- Date: Sat, 02 Aug 2025 15:31:55 GMT
- Title: Discovering Bias Associations through Open-Ended LLM Generations
- Authors: Jinhao Pan, Chahat Raj, Ziwei Zhu,
- Abstract summary: Social biases embedded in Large Language Models (LLMs) raise critical concerns.<n>We present the Bias Association Discovery Framework (BADF), a systematic approach for extracting associations between demographic identities and descriptive concepts.<n>Our findings advance the understanding of biases in open-ended generation and provide a scalable tool for identifying and analyzing bias associations in LLMs.
- Score: 1.7373859011890633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social biases embedded in Large Language Models (LLMs) raise critical concerns, resulting in representational harms -- unfair or distorted portrayals of demographic groups -- that may be expressed in subtle ways through generated language. Existing evaluation methods often depend on predefined identity-concept associations, limiting their ability to surface new or unexpected forms of bias. In this work, we present the Bias Association Discovery Framework (BADF), a systematic approach for extracting both known and previously unrecognized associations between demographic identities and descriptive concepts from open-ended LLM outputs. Through comprehensive experiments spanning multiple models and diverse real-world contexts, BADF enables robust mapping and analysis of the varied concepts that characterize demographic identities. Our findings advance the understanding of biases in open-ended generation and provide a scalable tool for identifying and analyzing bias associations in LLMs. Data, code, and results are available at https://github.com/JP-25/Discover-Open-Ended-Generation
Related papers
- Veracity Bias and Beyond: Uncovering LLMs' Hidden Beliefs in Problem-Solving Reasoning [4.452208564152158]
Despite human value-aligned models' alignment against demographic stereotypes, they have been shown to exhibit biases under various social contexts.<n>We show two forms of such veracity biases: Attribution Bias, where models disproportionately attribute correct solutions to certain demographic groups, and Evaluation Bias, where models' assessment of identical solutions varies based on perceived demographic authorship.<n>Our findings indicate that demographic bias extends beyond surface-level stereotypes and social context provocations, raising concerns about LLMs' deployment in educational and evaluation settings.
arXiv Detail & Related papers (2025-05-22T02:13:48Z) - Evaluating and Mitigating Social Bias for Large Language Models in Open-ended Settings [13.686732204665738]
We extend an existing BBQ dataset by incorporating fill-in-the-blank and short-answer question types.<n>Our finding reveals that LLMs produce responses that are more biased against certain protected attributes, like age and socio-economic status.<n>Our debiasing approach combined zero-shot, few-shot, and chain-of-thought could significantly reduce the level of bias to almost 0.
arXiv Detail & Related papers (2024-12-09T01:29:47Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
Multi-modal Large Language Models (MLLMs) have advanced significantly, offering powerful vision-language understanding capabilities.
However, these models often inherit severe social biases from their training datasets, leading to unfair predictions based on attributes like race and gender.
This paper addresses the issue of social biases in MLLMs by i) Introducing a comprehensive Counterfactual dataset with Multiple Social Concepts (CMSC) and ii) Proposing an Anti-Stereotype Debiasing strategy (ASD)
arXiv Detail & Related papers (2024-08-13T02:08:32Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.<n>FAST surpasses state-of-the-art baselines with superior debiasing performance.<n>This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
We introduce VLBiasBench, a benchmark to evaluate biases in Large Vision-Language Models (LVLMs)<n>VLBiasBench features a dataset that covers nine distinct categories of social biases, including age, disability status, gender, nationality, physical appearance, race, religion, profession, social economic status, as well as two intersectional bias categories: race x gender and race x social economic status.<n>We conduct extensive evaluations on 15 open-source models as well as two advanced closed-source models, yielding new insights into the biases present in these models.
arXiv Detail & Related papers (2024-06-20T10:56:59Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
Large language models (LLMs) have gained popularity and are being widely adopted by a large user community.
The existing evaluation methods have many constraints, and their results exhibit a limited degree of interpretability.
We propose a bias evaluation framework named GPTBIAS that leverages the high performance of LLMs to assess bias in models.
arXiv Detail & Related papers (2023-12-11T12:02:14Z) - Social Bias Probing: Fairness Benchmarking for Language Models [38.180696489079985]
This paper proposes a novel framework for probing language models for social biases by assessing disparate treatment.
We curate SoFa, a large-scale benchmark designed to address the limitations of existing fairness collections.
We show that biases within language models are more nuanced than acknowledged, indicating a broader scope of encoded biases than previously recognized.
arXiv Detail & Related papers (2023-11-15T16:35:59Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented.
Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs.
arXiv Detail & Related papers (2023-11-08T19:01:13Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
We present a comprehensive survey of bias evaluation and mitigation techniques for large language models (LLMs)
We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing.
We then unify the literature by proposing three intuitive, two for bias evaluation, and one for mitigation.
arXiv Detail & Related papers (2023-09-02T00:32:55Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
Large Language Models (LLMs) encode meanings of words in the form of distributed semantics.
Recent studies have shown that LLMs tend to generate unintended, inconsistent, or wrong texts as outputs.
We propose a novel ensemble learning method, Interpretable Ensemble Representation Learning (IERL), that systematically combines LLM and crowdsourced knowledge representations.
arXiv Detail & Related papers (2023-06-24T05:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.