Hyperspectral Image Recovery Constrained by Multi-Granularity Non-Local Self-Similarity Priors
- URL: http://arxiv.org/abs/2508.01435v1
- Date: Sat, 02 Aug 2025 16:51:07 GMT
- Title: Hyperspectral Image Recovery Constrained by Multi-Granularity Non-Local Self-Similarity Priors
- Authors: Zhuoran Peng, Yiqing Shen,
- Abstract summary: We introduce the concept of granularity in tensor decomposition for the first time and propose an HSI recovery model constrained by multi-granularity non-local self-similarity priors.<n> Experimental results demonstrate that the model has strong applicability and exhibits outstanding recovery effects in various types of missing scenes.
- Score: 4.14360329494344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) recovery, as an upstream image processing task, holds significant importance for downstream tasks such as classification, segmentation, and detection. In recent years, HSI recovery methods based on non-local prior representations have demonstrated outstanding performance. However, these methods employ a fixed-format factor to represent the non-local self-similarity tensor groups, making them unable to adapt to diverse missing scenarios. To address this issue, we introduce the concept of granularity in tensor decomposition for the first time and propose an HSI recovery model constrained by multi-granularity non-local self-similarity priors. Specifically, the proposed model alternately performs coarse-grained decomposition and fine-grained decomposition on the non-local self-similarity tensor groups. Among them, the coarse-grained decomposition builds upon Tucker tensor decomposition, which extracts global structural information of the image by performing singular value shrinkage on the mode-unfolded matrices. The fine-grained decomposition employs the FCTN decomposition, capturing local detail information through modeling pairwise correlations among factor tensors. This architectural approach achieves a unified representation of global, local, and non-local priors for HSIs. Experimental results demonstrate that the model has strong applicability and exhibits outstanding recovery effects in various types of missing scenes such as pixels and stripes.
Related papers
- Toward Temporal Causal Representation Learning with Tensor Decomposition [5.288554155235167]
In this paper, we focus on modeling causal representation learning based on the transformed information.<n>We propose CaRTeD, a joint learning framework that integrates temporal causal representation learning with irregular tensor decomposition.<n>Our results fill the gap in theoretical guarantees for the convergence of state-of-the-art irregular tensor decomposition.
arXiv Detail & Related papers (2025-07-18T17:55:42Z) - Score-Based Model for Low-Rank Tensor Recovery [49.158601255093416]
Low-rank tensor decompositions (TDs) provide an effective framework for multiway data analysis.<n>Traditional TD methods rely on predefined structural assumptions, such as CP or Tucker decompositions.<n>We propose a score-based model that eliminates the need for predefined structural or distributional assumptions.
arXiv Detail & Related papers (2025-06-27T15:05:37Z) - Low-Rank Implicit Neural Representation via Schatten-p Quasi-Norm and Jacobian Regularization [49.158601255093416]
We propose a CP-based low-rank tensor function parameterized by neural networks for implicit neural representation.<n>For smoothness, we propose a regularization term based on the spectral norm of the Jacobian and Hutchinson's trace estimator.<n>Our proposed smoothness regularization is SVD-free and avoids explicit chain rule derivations.
arXiv Detail & Related papers (2025-06-27T11:23:10Z) - G4Seg: Generation for Inexact Segmentation Refinement with Diffusion Models [38.44872934965588]
This paper considers the problem of utilizing a large-scale text-to-image model to tackle the Inexact diffusion (IS) task.<n>We exploit the pattern discrepancies between original images and mask-conditional generated images to facilitate a coarse-to-fine segmentation refinement.
arXiv Detail & Related papers (2025-06-02T11:05:28Z) - Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation [71.69331824668954]
Spectral variations pose a common challenge in analyzing hyperspectral images (HSI)<n>Low-rank tensor representation has emerged as a robust strategy, leveraging inherent correlations within HSI data.<n>We propose a novel model for irregular tensor lowrank representation tailored to efficiently model irregular 3D cubes.
arXiv Detail & Related papers (2024-10-24T02:56:22Z) - GRIDS: Grouped Multiple-Degradation Restoration with Image Degradation Similarity [35.11349385659554]
Grouped Restoration with Image Degradation Similarity (GRIDS) is a novel approach that harmonizes the competing objectives inherent in multiple-degradation restoration.
Based on the degradation similarity, GRIDS divides restoration tasks into one of the optimal groups, where tasks within the same group are highly correlated.
Trained models within each group show significant improvements, with an average improvement of 0.09dB over single-task upper bound models.
arXiv Detail & Related papers (2024-07-17T02:43:32Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Single Image Internal Distribution Measurement Using Non-Local
Variational Autoencoder [11.985083962982909]
This paper proposes a novel image-specific solution, namely non-local variational autoencoder (textttNLVAE)
textttNLVAE is introduced as a self-supervised strategy that reconstructs high-resolution images using disentangled information from the non-local neighbourhood.
Experimental results from seven benchmark datasets demonstrate the effectiveness of the textttNLVAE model.
arXiv Detail & Related papers (2022-04-02T18:43:55Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.