論文の概要: EfficientGFormer: Multimodal Brain Tumor Segmentation via Pruned Graph-Augmented Transformer
- arxiv url: http://arxiv.org/abs/2508.01465v1
- Date: Sat, 02 Aug 2025 18:52:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.891196
- Title: EfficientGFormer: Multimodal Brain Tumor Segmentation via Pruned Graph-Augmented Transformer
- Title(参考訳): EfficientGFormer:Pruned Graph-Augmented Transformerによるマルチモーダル脳腫瘍切除
- Authors: Fatemeh Ziaeetabar,
- Abstract要約: EfficientGFormerは、事前訓練された基礎モデルとグラフベースの推論を統合する新しいアーキテクチャである。
MSD Task01とBraTS 2021データセットの実験は、EfficientGFormerがメモリと推論時間を著しく削減して最先端の精度を達成することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient brain tumor segmentation remains a critical challenge in neuroimaging due to the heterogeneous nature of tumor subregions and the high computational cost of volumetric inference. In this paper, we propose EfficientGFormer, a novel architecture that integrates pretrained foundation models with graph-based reasoning and lightweight efficiency mechanisms for robust 3D brain tumor segmentation. Our framework leverages nnFormer as a modality-aware encoder, transforming multi-modal MRI volumes into patch-level embeddings. These features are structured into a dual-edge graph that captures both spatial adjacency and semantic similarity. A pruned, edge-type-aware Graph Attention Network (GAT) enables efficient relational reasoning across tumor subregions, while a distillation module transfers knowledge from a full-capacity teacher to a compact student model for real-time deployment. Experiments on the MSD Task01 and BraTS 2021 datasets demonstrate that EfficientGFormer achieves state-of-the-art accuracy with significantly reduced memory and inference time, outperforming recent transformer-based and graph-based baselines. This work offers a clinically viable solution for fast and accurate volumetric tumor delineation, combining scalability, interpretability, and generalization.
- Abstract(参考訳): 腫瘍亜領域の不均一性や容積推論の計算コストが高いため、正確な脳腫瘍の分節化は神経イメージングにおいて重要な課題である。
本稿では,従来の基礎モデルとグラフベースの推論と,頑健な3次元脳腫瘍のセグメンテーションのための軽量な効率メカニズムを統合した新しいアーキテクチャであるEfficientGFormerを提案する。
我々のフレームワークは, nnFormerをモダリティ対応エンコーダとして活用し, マルチモーダルMRIボリュームをパッチレベルの埋め込みに変換する。
これらの特徴は、空間的隣接性と意味的類似性の両方をキャプチャするデュアルエッジグラフに構造化される。
成熟したエッジ型グラフ注意ネットワーク(GAT)は腫瘍サブリージョン間の効率的なリレーショナル推論を可能にし、蒸留モジュールはフル容量の教師から実時間展開のためのコンパクトな学生モデルに知識を伝達する。
MSD Task01とBraTS 2021データセットの実験では、EfficientGFormerがメモリと推論時間を大幅に削減して最先端の精度を実現し、最近のトランスフォーマーベースとグラフベースベースベースラインを上回っている。
この研究は、拡張性、解釈可能性、一般化を組み合わせた、迅速かつ正確な体積型腫瘍記述のための臨床的に実行可能なソリューションを提供する。
関連論文リスト
- Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Segmentation (GMLN-BTS) in Edge Iterative MRI Lesion Localization System (EdgeIMLocSys) [6.451534509235736]
本稿では,人間のフィードバックから連続学習を統合するEdge IMLocSys (Edge Iterative MRI Lesion Localization System) を提案する。
このシステムの中心は、GMLN-BTS(GMLN-BTS)のためのグラフベースの多モード相互作用軽量ネットワークである。
提案したGMLN-BTSモデルは、BraTS 2017データセットで85.1%のDiceスコアを達成し、パラメータはわずか458万で、メインストリームの3Dトランスフォーマーモデルと比較して98%削減された。
論文 参考訳(メタデータ) (2025-07-14T07:29:49Z) - Improved Brain Tumor Detection in MRI: Fuzzy Sigmoid Convolution in Deep Learning [5.350541719319564]
ファジィシグモイド・コンボリューション(FSC)は、最上位モジュールと中間モジュールの2つの追加モジュールと共に導入された。
新たな畳み込み演算子がこのアプローチの中心であり、入力データの整合性を保ちながら受容場を効果的に拡張する。
この研究は、医用イメージング応用のための軽量で高性能なディープラーニングモデルを提供する。
論文 参考訳(メタデータ) (2025-05-08T13:02:44Z) - MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Enhancing Brain Tumor Segmentation Using Channel Attention and Transfer learning [5.062500255359342]
自動脳腫瘍分割のためのResUNetアーキテクチャを提案する。
EfficientNetB0エンコーダは、事前訓練された機能を活用して、機能の抽出効率を向上させる。
チャネルアテンション機構は、腫瘍関連の特徴に焦点を絞るモデルを強化する。
論文 参考訳(メタデータ) (2025-01-19T23:58:16Z) - MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
本研究では,マルチブランチ残差ブロックを統合した3次元U-Netフレームワークを用いたMBDRes-U-Netモデルを提案する。
モデルの計算負担は分岐戦略によって低減され、マルチモーダル画像のリッチな局所的特徴を効果的に活用する。
論文 参考訳(メタデータ) (2024-11-04T09:03:43Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
本稿では,畳み込みニューラルネットワーク(CNN)とトランスフォーマー層を組み合わせたハイブリッドネットワークを提案する。
プライベートおよびパブリックなDCE-MRIデータセットの実験結果から,提案したハイブリッドネットワークは最先端の手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-08-11T15:46:00Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
アンロールされたニューラルネットワークは、最近最先端の加速MRI再構成を達成した。
これらのネットワークは、物理ベースの一貫性とニューラルネットワークベースの正規化を交互に組み合わせることで、反復最適化アルゴリズムをアンロールする。
我々は,高次元画像設定のための効率的なトレーニング戦略である加速度MRI再構成のためのグレディ・ラーニングを提案する。
論文 参考訳(メタデータ) (2022-07-18T06:01:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。