Prototype Learning to Create Refined Interpretable Digital Phenotypes from ECGs
- URL: http://arxiv.org/abs/2508.01521v1
- Date: Sat, 02 Aug 2025 23:52:08 GMT
- Title: Prototype Learning to Create Refined Interpretable Digital Phenotypes from ECGs
- Authors: Sahil Sethi, David Chen, Michael C. Burkhart, Nipun Bhandari, Bashar Ramadan, Brett Beaulieu-Jones,
- Abstract summary: Prototype-based neural networks offer interpretable predictions by comparing inputs to learned, representative signal patterns anchored in training data.<n>We use a prototype-based deep learning model trained for multi-label ECG classification using the PTB-XL dataset.<n>We assess whether individual prototypes, trained solely for classification, are associated with hospital discharge diagnoses in the form of phecodes.
- Score: 0.21987601456703473
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Prototype-based neural networks offer interpretable predictions by comparing inputs to learned, representative signal patterns anchored in training data. While such models have shown promise in the classification of physiological data, it remains unclear whether their prototypes capture an underlying structure that aligns with broader clinical phenotypes. We use a prototype-based deep learning model trained for multi-label ECG classification using the PTB-XL dataset. Then without modification we performed inference on the MIMIC-IV clinical database. We assess whether individual prototypes, trained solely for classification, are associated with hospital discharge diagnoses in the form of phecodes in this external population. Individual prototypes demonstrate significantly stronger and more specific associations with clinical outcomes compared to the classifier's class predictions, NLP-extracted concepts, or broader prototype classes across all phecode categories. Prototype classes with mixed significance patterns exhibit significantly greater intra-class distances (p $<$ 0.0001), indicating the model learned to differentiate clinically meaningful variations within diagnostic categories. The prototypes achieve strong predictive performance across diverse conditions, with AUCs ranging from 0.89 for atrial fibrillation to 0.91 for heart failure, while also showing substantial signal for non-cardiac conditions such as sepsis and renal disease. These findings suggest that prototype-based models can support interpretable digital phenotyping from physiologic time-series data, providing transferable intermediate phenotypes that capture clinically meaningful physiologic signatures beyond their original training objectives.
Related papers
- ProtoECGNet: Case-Based Interpretable Deep Learning for Multi-Label ECG Classification with Contrastive Learning [0.21079694661943607]
ProtoECGNet is a prototype deep learning model for interpretable, multilabel ECG classification.<n>We evaluate ProtoECGNet on all 71 diagnostic labels from the PTB-XL dataset.<n>ProtoECGNet shows that prototype learning can be effectively scaled to complex, multi-label time-series classification.
arXiv Detail & Related papers (2025-04-11T17:23:37Z) - An evaluation of GPT models for phenotype concept recognition [0.4715973318447338]
We examine the performance of the latest Generative Pre-trained Transformer (GPT) models for clinical phenotyping and phenotype annotation.
Our results show that, with an appropriate setup, these models can achieve state of the art performance.
arXiv Detail & Related papers (2023-09-29T12:06:55Z) - Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
This study introduces a Graph Convolution Network (GCN) to exploit prior co-occurrence between each category as a correlation matrix into the deep learning model for the multi-label classification.
We propose a Graph-Ensemble Learning Model (GELN) that views the prediction from GCN as complementary information of the predictions from the fusion model.
arXiv Detail & Related papers (2023-07-04T13:19:57Z) - Interpretable Classification of Early Stage Parkinson's Disease from EEG [0.6597195879147557]
This paper introduces a novel approach to detecting Parkinson's Disease in its early stages using EEG data.
The hypothesis is that this representation captures essential information from the noisy EEG signal, improving disease detection.
Statistical features extracted from this representation are utilised as input for interpretable machine learning models.
In Future, these models could be deployed in the real world - the results presented in this paper indicate that more than 3 in 4 early-stage Parkinson's cases would be captured with our pipeline.
arXiv Detail & Related papers (2023-01-20T16:11:02Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Hybrid deep learning methods for phenotype prediction from clinical
notes [4.866431869728018]
This paper proposes a novel hybrid model for automatically extracting patient phenotypes using natural language processing and deep learning models.
The proposed hybrid model is based on a neural bidirectional sequence model (BiLSTM or BiGRU) and a Convolutional Neural Network (CNN) for identifying patient's phenotypes in discharge reports.
arXiv Detail & Related papers (2021-08-16T05:57:28Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
We show the importance of this problem in medical community.
We present a modification of Bidirectional Representations from Transformers (BERT) model for classification sequence.
We use a large-scale Russian EHR dataset consisting of about 4 million unique patient visits.
arXiv Detail & Related papers (2020-07-15T09:22:55Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
We present a relation-driven semi-supervised framework for medical image classification.
It exploits the unlabeled data by encouraging the prediction consistency of given input under perturbations.
Our method outperforms many state-of-the-art semi-supervised learning methods on both single-label and multi-label image classification scenarios.
arXiv Detail & Related papers (2020-05-15T06:57:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.