論文の概要: Leveraging Machine Learning for Botnet Attack Detection in Edge-Computing Assisted IoT Networks
- arxiv url: http://arxiv.org/abs/2508.01542v1
- Date: Sun, 03 Aug 2025 01:52:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.93121
- Title: Leveraging Machine Learning for Botnet Attack Detection in Edge-Computing Assisted IoT Networks
- Title(参考訳): エッジコンピューティング支援IoTネットワークにおけるボットネット検出のための機械学習の活用
- Authors: Dulana Rupanetti, Naima Kaabouch,
- Abstract要約: 本稿では,エッジコンピューティング支援IoT環境におけるセキュリティ向上のための機械学習技術の適用について検討する。
ボットネット脅威の動的で複雑な性質に対処するため、ランダムフォレスト、XGBoost、LightGBMの比較分析を行う。
この結果は、IoTネットワークを新たなサイバーセキュリティ問題に対して強化する機械学習の可能性を強調している。
- 参考スコア(独自算出の注目度): 0.34530027457862006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increase of IoT devices, driven by advancements in hardware technologies, has led to widespread deployment in large-scale networks that process massive amounts of data daily. However, the reliance on Edge Computing to manage these devices has introduced significant security vulnerabilities, as attackers can compromise entire networks by targeting a single IoT device. In light of escalating cybersecurity threats, particularly botnet attacks, this paper investigates the application of machine learning techniques to enhance security in Edge-Computing-Assisted IoT environments. Specifically, it presents a comparative analysis of Random Forest, XGBoost, and LightGBM -- three advanced ensemble learning algorithms -- to address the dynamic and complex nature of botnet threats. Utilizing a widely recognized IoT network traffic dataset comprising benign and malicious instances, the models were trained, tested, and evaluated for their accuracy in detecting and classifying botnet activities. Furthermore, the study explores the feasibility of deploying these models in resource-constrained edge and IoT devices, demonstrating their practical applicability in real-world scenarios. The results highlight the potential of machine learning to fortify IoT networks against emerging cybersecurity challenges.
- Abstract(参考訳): ハードウェア技術の進歩によって引き起こされたIoTデバイスの増加は、大量のデータを毎日処理する大規模ネットワークへの広範な展開につながった。
しかし、これらのデバイスを管理するためのエッジコンピューティングへの依存は、攻撃者が単一のIoTデバイスをターゲットとしてネットワーク全体に侵入し、重大なセキュリティ脆弱性をもたらしている。
本稿では,サイバーセキュリティの脅威,特にボットネット攻撃のエスカレートを考慮し,エッジコンピューティング支援IoT環境におけるセキュリティ向上のための機械学習技術の適用について検討する。
具体的には、3つの高度なアンサンブル学習アルゴリズムであるRandom Forest、XGBoost、LightGBMを比較して、ボットネットの脅威の動的で複雑な性質に対処する。
良質なインスタンスと悪意のあるインスタンスからなる広く認識されているIoTネットワークトラフィックデータセットを利用することで、ボットネットアクティビティの検出と分類の正確さをトレーニング、テスト、評価した。
さらに、リソース制約のあるエッジとIoTデバイスにこれらのモデルをデプロイする可能性についても検討し、現実のシナリオにおける現実的な適用性を実証した。
この結果は、IoTネットワークを新たなサイバーセキュリティ問題に対して強化する機械学習の可能性を強調している。
関連論文リスト
- INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization [43.37351326629751]
インネットワークAI(In-network AI)は、ネットワークインフラストラクチャにおける人工知能(AI)のエスカレート要求に対処するための、変革的なアプローチである。
本稿では,AIのためのネットワーク内計算の最適化に関する包括的な分析を行う。
リソース制約のあるネットワークデバイスにAIモデルをマッピングするための方法論を調べ、メモリや計算能力の制限といった課題に対処する。
論文 参考訳(メタデータ) (2025-05-30T06:47:55Z) - Intelligent Detection of Non-Essential IoT Traffic on the Home Gateway [45.70482328441101]
本研究は,エッジにおけるネットワークの挙動を解析することにより,非必要IoTトラフィックを検出し緩和するシステムであるML-IoTrimを提案する。
当社のフレームワークは、IoTデバイスを5つのカテゴリから構成したコンシューマスマートホームセットアップでテストし、モデルが非本質的なトラフィックを正確に識別し、ブロックできることを実証した。
この研究は、スマートホームにおけるプライバシーに配慮したトラフィック制御を推進し、IoTデバイスプライバシの今後の発展への道を開く。
論文 参考訳(メタデータ) (2025-04-22T09:40:05Z) - Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things [11.185300073739098]
従来の侵入検知システム(IDS)は、IoTネットワークの動的かつ大規模な性質を管理するのに不足することが多い。
本稿では,機械学習(ML)とディープラーニング(DL)技術がIoT環境におけるIDSのパフォーマンスを大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2025-04-09T18:52:15Z) - Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - Enhancing Cybersecurity in IoT Networks: A Deep Learning Approach to Anomaly Detection [0.0]
インターネットやスマートデバイスの普及は、サイバー犯罪の増加につながっている。
本稿では,IoTネットワークにおけるサイバー犯罪と戦う上で重要な戦略であるLSTMとアテンションメカニズムを取り入れたディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2024-12-11T11:31:05Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
モノのインターネット(Internet of Things, IoT)は、デバイスやものをインターネット上でコントロールすることによって、生活を変えてきた。
IoTネットワークをダウンさせるために、攻撃者はこれらのデバイスを使用してさまざまなネットワーク攻撃を行うことができる。
本稿では,非ラベルデータセットからIoTネットワークにおける新たな,あるいは未知の攻撃を検出可能な,教師なしアンサンブル学習モデルを開発した。
論文 参考訳(メタデータ) (2022-07-16T11:12:32Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
人工知能(AI)は、さまざまなモノのインターネット(IoT)アプリケーションやサービスにおいて大きなブレークスルーを目の当たりにした。
これは、感覚データへの容易なアクセスと、リアルタイムデータストリームのゼッタバイト(ZB)を生成する広帯域/ユビキタスデバイスの巨大なスケールによって駆動される。
広範コンピューティングと人工知能の合流により、Pervasive AIはユビキタスIoTシステムの役割を拡大した。
論文 参考訳(メタデータ) (2021-05-04T23:42:06Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
組織におけるIoTデバイスの利用の増加は、攻撃者が利用可能な攻撃ベクトルの数を増やしている。
広く採用されている独自のデバイス(BYOD)ポリシにより、従業員が任意のIoTデバイスを職場に持ち込み、組織のネットワークにアタッチすることで、攻撃のリスクも増大する。
本研究では、ネットワークトラフィックにディープラーニングを適用し、ネットワークに接続されたIoTデバイスを自動的に識別する。
論文 参考訳(メタデータ) (2020-02-25T12:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。