Refine-n-Judge: Curating High-Quality Preference Chains for LLM-Fine-Tuning
- URL: http://arxiv.org/abs/2508.01543v1
- Date: Sun, 03 Aug 2025 01:56:03 GMT
- Title: Refine-n-Judge: Curating High-Quality Preference Chains for LLM-Fine-Tuning
- Authors: Derin Cayir, Renjie Tao, Rashi Rungta, Kai Sun, Sean Chen, Haidar Khan, Minseok Kim, Julia Reinspach, Yue Liu,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable progress through preference-based fine-tuning.<n>This paper introduces Refine-n-Judge, an automated iterative approach that leverages a single LLM as both a refiner and a judge to enhance dataset quality.<n>We demonstrate the effectiveness of Refine-n-Judge across a range of public datasets spanning five corpora, targeting tasks such as coding, math, and conversation.
- Score: 14.254037571895404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable progress through preference-based fine-tuning, which critically depends on the quality of the underlying training data. While human feedback is essential for improving data quality, it is costly and does not scale well. In this paper, we introduce Refine-n-Judge, an automated iterative approach that leverages a single LLM as both a refiner and a judge to enhance dataset quality. Unlike existing iterative refinement methods, Refine-n-Judge employs an LLM to both generate refinements and explicitly evaluate each improvement, ensuring that every iteration meaningfully enhances the dataset without requiring additional human annotation or a separate reward model. At each step, the LLM refines a response and judges whether the refinement is an improvement over the previous answer. This process continues until the LLM prefers the initial answer over the refinement, indicating no further improvements. This produces sequences of increasing quality, preference-labeled responses ideal for fine-tuning. We demonstrate the effectiveness of Refine-n-Judge across a range of public datasets spanning five corpora, targeting tasks such as coding, math, and conversation. Models (Llama 3.1-8B and Llama 3.3-70B) fine-tuned on Refine-n-Judge-enhanced datasets were preferred by LLM judges in over 74% of comparisons against models tuned on the original dataset by GPT-4. Additionally, we report performance gains: +5% on AlpacaEval and AlpacaEval 2.0, and +19% on MT-Bench. Our results indicate that Refine-n-Judge produces high-quality datasets and scalable model improvements.
Related papers
- Augmenting Human-Annotated Training Data with Large Language Model Generation and Distillation in Open-Response Assessment [4.788487793976781]
Large Language Models (LLMs) can help automate text classification tasks at low cost and scale.<n>By contrast, human coding is generally more reliable but expensive to procure at scale.<n>We propose a hybrid solution to leverage the strengths of both.
arXiv Detail & Related papers (2025-01-15T20:13:46Z) - EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation [58.546205554954454]
We propose Enhancing Alignment in MLLMs via Critical Observation (EACO)<n>EACO aligns MLLMs by self-generated preference data using only 5k images economically.<n>EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition.
arXiv Detail & Related papers (2024-12-06T09:59:47Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Learning to Summarize from LLM-generated Feedback [18.937441310579164]
This work explores using LLM-generated feedback to improve summary quality by aligning the summaries with human preferences for faithfulness, completeness, and conciseness.<n>Our experiments show how feedback quality, dimensionality, and granularity influence preference learning.<n>We introduce SummLlama3-8b, a model that outperforms the nearly 10x larger Llama3-70b-instruct in generating human-preferred summaries.
arXiv Detail & Related papers (2024-10-17T01:01:09Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.<n>We show that our approach consistently boosts DPO by a considerable margin.<n>Our method not only maximizes the utility of preference data but also mitigates the issue of unlearning, demonstrating its broad effectiveness beyond mere data expansion.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - Self-Boosting Large Language Models with Synthetic Preference Data [97.94185115047999]
We introduce SynPO, a self-boosting paradigm that leverages synthetic preference data for model alignment.
After four SynPO iterations, Llama3-8B and Mistral-7B show significant enhancements in instruction-following abilities.
SynPO improves the general performance of LLMs on various tasks, validated by a 3.2 to 5.0 average score increase on the well-recognized Open LLM leaderboard.
arXiv Detail & Related papers (2024-10-09T14:57:31Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Silkie: Preference Distillation for Large Visual Language Models [56.10697821410489]
This paper explores preference distillation for large vision language models (LVLMs)
We first build a vision-language feedback dataset utilizing AI annotation.
We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations.
The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities.
arXiv Detail & Related papers (2023-12-17T09:44:27Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.