KANMixer: Can KAN Serve as a New Modeling Core for Long-term Time Series Forecasting?
- URL: http://arxiv.org/abs/2508.01575v1
- Date: Sun, 03 Aug 2025 04:03:13 GMT
- Title: KANMixer: Can KAN Serve as a New Modeling Core for Long-term Time Series Forecasting?
- Authors: Lingyu Jiang, Yuping Wang, Yao Su, Shuo Xing, Wenjing Chen, Xin Zhang, Zhengzhong Tu, Ziming Zhang, Fangzhou Lin, Michael Zielewski, Kazunori D Yamada,
- Abstract summary: We introduce KANMixer, a concise architecture integrating a multi-scale mixing backbone that fully leverages KAN's adaptive capabilities.<n>We show that KANMixer achieves state-of-the-art performance in 16 out of 28 experiments across seven benchmark datasets.
- Score: 17.96421618979159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, multilayer perceptrons (MLP)-based deep learning models have demonstrated remarkable success in long-term time series forecasting (LTSF). Existing approaches typically augment MLP backbones with hand-crafted external modules to address the inherent limitations of their flat architectures. Despite their success, these augmented methods neglect hierarchical locality and sequential inductive biases essential for time-series modeling, and recent studies indicate diminishing performance improvements. To overcome these limitations, we explore Kolmogorov-Arnold Networks (KAN), a recently proposed model featuring adaptive basis functions capable of granular, local modulation of nonlinearities. This raises a fundamental question: Can KAN serve as a new modeling core for LTSF? To answer this, we introduce KANMixer, a concise architecture integrating a multi-scale mixing backbone that fully leverages KAN's adaptive capabilities. Extensive evaluation demonstrates that KANMixer achieves state-of-the-art performance in 16 out of 28 experiments across seven benchmark datasets. To uncover the reasons behind this strong performance, we systematically analyze the strengths and limitations of KANMixer in comparison with traditional MLP architectures. Our findings reveal that the adaptive flexibility of KAN's learnable basis functions significantly transforms the influence of network structural prior on forecasting performance. Furthermore, we identify critical design factors affecting forecasting accuracy and offer practical insights for effectively utilizing KAN in LTSF. Together, these insights constitute the first empirically grounded guidelines for effectively leveraging KAN in LTSF. Code is available in the supplementary file.
Related papers
- Bridging KAN and MLP: MJKAN, a Hybrid Architecture with Both Efficiency and Expressiveness [5.474797258314827]
Modulation Joint KAN (MJKAN) is a novel neural network layer designed to overcome these challenges.<n>MJKAN integrates a FiLM (Feature-wise Linear Modulation)-like mechanism with Radial Basis Function activations.<n>We empirically validated MJKAN's performance across a diverse set of benchmarks, including function regression, image classification (MNIST, CIFAR-10/100), and natural language processing (AG News, SMS)
arXiv Detail & Related papers (2025-07-07T06:13:32Z) - Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification [0.17999333451993949]
Kolmogorov-Arnold Networks (KANs) have been proposed as a more interpretable alternative to state-of-the-art models.<n>In this paper, we aim to conduct a comprehensive and robust exploration of the KAN architecture for time series classification.<n>Our results show that (1) Efficient KAN outperforms in performance and computational efficiency, showcasing its suitability for tasks classification tasks.
arXiv Detail & Related papers (2024-11-22T13:01:36Z) - A preliminary study on continual learning in computer vision using Kolmogorov-Arnold Networks [43.70716358136333]
Kolmogorov- Networks (KAN) are based on a fundamentally different mathematical framework.
KANs address several major issues insio, such as forgetting in continual learning scenarios.
We extend the investigation by evaluating the performance of KANs in continual learning tasks within computer vision.
arXiv Detail & Related papers (2024-09-20T14:49:21Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - Kolmogorov-Arnold Networks (KANs) for Time Series Analysis [6.932243286441558]
We introduce a novel application of Kolmogorov-Arnold Networks (KANs) to time series forecasting.
Inspired by the Kolmogorov-Arnold representation theorem, KANs replace traditional linear weights with spline-parametrized univariate functions.
We demonstrate that KANs outperforms conventional Multi-Layer Perceptrons (MLPs) in a real-world satellite traffic forecasting task.
arXiv Detail & Related papers (2024-05-14T17:38:17Z) - Federated Learning over Hierarchical Wireless Networks: Training Latency Minimization via Submodel Partitioning [15.311309249848739]
Hierarchical independent submodel training (HIST) is a new FL methodology that aims to address these issues in hierarchical cloud-edge-client networks.<n>We demonstrate how HIST can be augmented with over-the-air computation (AirComp) to further enhance the efficiency of the model aggregation over the edge cells.
arXiv Detail & Related papers (2023-10-27T04:42:59Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - Parameter-Efficient Mixture-of-Experts Architecture for Pre-trained
Language Models [68.9288651177564]
We present a novel MoE architecture based on matrix product operators (MPO) from quantum many-body physics.
With the decomposed MPO structure, we can reduce the parameters of the original MoE architecture.
Experiments on the three well-known downstream natural language datasets based on GPT2 show improved performance and efficiency in increasing model capacity.
arXiv Detail & Related papers (2022-03-02T13:44:49Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z) - Regularizing Generative Adversarial Networks under Limited Data [88.57330330305535]
This work proposes a regularization approach for training robust GAN models on limited data.
We show a connection between the regularized loss and an f-divergence called LeCam-divergence, which we find is more robust under limited training data.
arXiv Detail & Related papers (2021-04-07T17:59:06Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.