Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification
- URL: http://arxiv.org/abs/2411.14904v2
- Date: Tue, 18 Feb 2025 16:36:23 GMT
- Title: Exploring Kolmogorov-Arnold Networks for Interpretable Time Series Classification
- Authors: Irina Barašin, Blaž Bertalanič, Mihael Mohorčič, Carolina Fortuna,
- Abstract summary: Kolmogorov-Arnold Networks (KANs) have been proposed as a more interpretable alternative to state-of-the-art models.
In this paper, we aim to conduct a comprehensive and robust exploration of the KAN architecture for time series classification.
Our results show that (1) Efficient KAN outperforms in performance and computational efficiency, showcasing its suitability for tasks classification tasks.
- Score: 0.17999333451993949
- License:
- Abstract: Time series classification is a relevant step supporting decision-making processes in various domains, and deep neural models have shown promising performance. Despite significant advancements in deep learning, the theoretical understanding of how and why complex architectures function remains limited, prompting the need for more interpretable models. Recently, the Kolmogorov-Arnold Networks (KANs) have been proposed as a more interpretable alternative. While KAN-related research is significantly rising, to date, the study of KAN architectures for time series classification has been limited. In this paper, we aim to conduct a comprehensive and robust exploration of the KAN architecture for time series classification on the UCR benchmark. More specifically, we look at a) how reference architectures for forecasting transfer to classification, at the b) hyperparameter and implementation influence on the classification performance in view of finding the one that performs best on the selected benchmark, the c) complexity trade-offs and d) interpretability advantages. Our results show that (1) Efficient KAN outperforms MLP in performance and computational efficiency, showcasing its suitability for tasks classification tasks. (2) Efficient KAN is more stable than KAN across grid sizes, depths, and layer configurations, particularly with lower learning rates. (3) KAN maintains competitive accuracy compared to state-of-the-art models like HIVE-COTE2, with smaller architectures and faster training times, supporting its balance of performance and transparency. (4) The interpretability of the KAN model aligns with findings from SHAP analysis, reinforcing its capacity for transparent decision-making.
Related papers
- S-LoRA: Scalable Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
Continual Learning with foundation models has emerged as a promising approach to harnessing the power of pre-trained models for sequential tasks.
We propose a Scalable Low-Rank Adaptation (S-LoRA) method for CL (in particular class incremental learning), which incrementally decouples the learning of the direction and magnitude of LoRA parameters.
Our theoretical and empirical analysis demonstrates that S-LoRA tends to follow a low-loss trajectory that converges to an overlapped low-loss region, resulting in an excellent stability-plasticity trade-off in CL.
arXiv Detail & Related papers (2025-01-22T20:00:41Z) - ProKAN: Progressive Stacking of Kolmogorov-Arnold Networks for Efficient Liver Segmentation [0.0]
proKAN is a progressive stacking methodology for Kolmogorov-Arnold Networks (KANs) designed to address these challenges.
proKAN dynamically adjusts its complexity by progressively adding KAN blocks during training, based on overfitting behavior.
Our proposed architecture achieves state-of-the-art performance in liver segmentation tasks, outperforming standard Multi-Layer Perceptrons (MLPs) and fixed KAN architectures.
arXiv Detail & Related papers (2024-12-27T16:14:06Z) - Can KAN Work? Exploring the Potential of Kolmogorov-Arnold Networks in Computer Vision [6.554163686640315]
This study first analyzes the potential of KAN in computer vision tasks, evaluating the performance of KAN and its convolutional variants in image classification and semantic segmentation.
Results indicate that while KAN exhibits stronger fitting capabilities, it is highly sensitive to noise, limiting its robustness.
To address this challenge, we propose a regularization method and introduce a Segment Deactivation technique.
arXiv Detail & Related papers (2024-11-11T05:44:48Z) - Kolmogorov-Arnold Network Autoencoders [0.0]
Kolmogorov-Arnold Networks (KANs) are promising alternatives to Multi-Layer Perceptrons (MLPs)
KANs align closely with the Kolmogorov-Arnold representation theorem, potentially enhancing both model accuracy and interpretability.
Our results demonstrate that KAN-based autoencoders achieve competitive performance in terms of reconstruction accuracy.
arXiv Detail & Related papers (2024-10-02T22:56:00Z) - KAN we improve on HEP classification tasks? Kolmogorov-Arnold Networks applied to an LHC physics example [0.08192907805418582]
Kolmogorov-Arnold Networks (KANs) have been proposed as an alternative to multilayer perceptrons.
We study a typical binary event classification task in high-energy physics.
We find that the learned activation functions of a one-layer KAN resemble the log-likelihood ratio of the input features.
arXiv Detail & Related papers (2024-08-05T18:01:07Z) - Image Classification using Fuzzy Pooling in Convolutional Kolmogorov-Arnold Networks [0.0]
We present an approach that integrates Kolmogorov-Arnold Network (KAN) classification heads and Fuzzy Pooling into convolutional neural networks (CNNs)
Our comparative analysis demonstrates that the modified CNN architecture with KAN and Fuzzy Pooling achieves comparable or higher accuracy than traditional models.
arXiv Detail & Related papers (2024-07-23T08:18:04Z) - Open-Set Recognition: A Good Closed-Set Classifier is All You Need [146.6814176602689]
We show that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes.
We use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy.
We also construct new benchmarks which better respect the task of detecting semantic novelty.
arXiv Detail & Related papers (2021-10-12T17:58:59Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared
Person Re-Identification [102.89434996930387]
VI-ReID aims to match cross-modality pedestrian images, breaking through the limitation of single-modality person ReID in dark environment.
Existing works manually design various two-stream architectures to separately learn modality-specific and modality-sharable representations.
We propose a novel method, named Cross-Modality Neural Architecture Search (CM-NAS)
arXiv Detail & Related papers (2021-01-21T07:07:00Z) - DAIS: Automatic Channel Pruning via Differentiable Annealing Indicator
Search [55.164053971213576]
convolutional neural network has achieved great success in fulfilling computer vision tasks despite large computation overhead.
Structured (channel) pruning is usually applied to reduce the model redundancy while preserving the network structure.
Existing structured pruning methods require hand-crafted rules which may lead to tremendous pruning space.
arXiv Detail & Related papers (2020-11-04T07:43:01Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
We introduce a new reinforcement learning based neural architecture search (NAS) methodology for generative adversarial network (GAN) architecture search.
The key idea is to formulate the GAN architecture search problem as a Markov decision process (MDP) for smoother architecture sampling.
We exploit an off-policy GAN architecture search algorithm that makes efficient use of the samples generated by previous policies.
arXiv Detail & Related papers (2020-07-17T18:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.