Censored Sampling for Topology Design: Guiding Diffusion with Human Preferences
- URL: http://arxiv.org/abs/2508.01589v1
- Date: Sun, 03 Aug 2025 05:06:26 GMT
- Title: Censored Sampling for Topology Design: Guiding Diffusion with Human Preferences
- Authors: Euihyun Kim, Keun Park, Yeoneung Kim,
- Abstract summary: We propose a novel human-in-the-loop diffusion framework that steers the generative process.<n>Inspired by preference alignment techniques in generative modeling, our method learns to suppress unrealistic outputs.<n>Preliminary results show substantial reductions in failure modes and improved design realism across diverse test conditions.
- Score: 1.3654846342364308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in denoising diffusion models have enabled rapid generation of optimized structures for topology optimization. However, these models often rely on surrogate predictors to enforce physical constraints, which may fail to capture subtle yet critical design flaws such as floating components or boundary discontinuities that are obvious to human experts. In this work, we propose a novel human-in-the-loop diffusion framework that steers the generative process using a lightweight reward model trained on minimal human feedback. Inspired by preference alignment techniques in generative modeling, our method learns to suppress unrealistic outputs by modulating the reverse diffusion trajectory using gradients of human-aligned rewards. Specifically, we collect binary human evaluations of generated topologies and train classifiers to detect floating material and boundary violations. These reward models are then integrated into the sampling loop of a pre-trained diffusion generator, guiding it to produce designs that are not only structurally performant but also physically plausible and manufacturable. Our approach is modular and requires no retraining of the diffusion model. Preliminary results show substantial reductions in failure modes and improved design realism across diverse test conditions. This work bridges the gap between automated design generation and expert judgment, offering a scalable solution to trustworthy generative design.
Related papers
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
We propose a one-step diffusion model for deblurring (OSDD), a novel framework that reduces the denoising process to a single step.<n>To tackle fidelity loss in diffusion models, we introduce an enhanced variational autoencoder (eVAE), which improves structural restoration.<n>Our method achieves strong performance on both full and no-reference metrics.
arXiv Detail & Related papers (2025-03-09T09:39:57Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
We introduce a novel framework that enhances diffusion models by supporting a broader range of forward processes.<n>We also propose a novel parameterization technique for learning the forward process.<n>Results underscore NFDM's versatility and its potential for a wide range of applications.
arXiv Detail & Related papers (2024-04-19T15:10:54Z) - Unsupervised Discovery of Interpretable Directions in h-space of
Pre-trained Diffusion Models [63.1637853118899]
We propose the first unsupervised and learning-based method to identify interpretable directions in h-space of pre-trained diffusion models.
We employ a shift control module that works on h-space of pre-trained diffusion models to manipulate a sample into a shifted version of itself.
By jointly optimizing them, the model will spontaneously discover disentangled and interpretable directions.
arXiv Detail & Related papers (2023-10-15T18:44:30Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [32.752633250862694]
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data.
We introduce a new framework, Reward rAnked FineTuning, designed to align generative models effectively.
arXiv Detail & Related papers (2023-04-13T18:22:40Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
diffusion models have quickly become the prevailing approach to generative modeling in many domains.
We propose an energy-based parameterization of diffusion models which enables the use of new compositional operators.
We find these samplers lead to notable improvements in compositional generation across a wide set of problems.
arXiv Detail & Related papers (2023-02-22T18:48:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.