Bose-Hubbard model in the canonical ensemble: a beyond mean-field approach
- URL: http://arxiv.org/abs/2508.01692v1
- Date: Sun, 03 Aug 2025 09:51:35 GMT
- Title: Bose-Hubbard model in the canonical ensemble: a beyond mean-field approach
- Authors: Tista Banerjee,
- Abstract summary: In this paper, we consider an ansatz wave-function which respects total particle-number conservation for quantum many-body systems.<n>This wave-function has the same complexity in the number of parameters as the mean-field Gutzwiller ansatz.<n>We show that the relaxation dynamics of various out-of-equilibrium initial states under sudden quench of Hamiltonian parameters can be studied with this ansatz wavefunction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultracold atoms in optical lattices are versatile testbeds to study and manipulate equilibrium and out-of-equilibrium aspects of quantum many-body systems whose behavior can be described by Hubbard-type Hamiltonians. In this paper, we consider an ansatz wave-function which respects total particle-number conservation for such systems and goes beyond mean-field theory; this wave-function has the same complexity in the number of parameters as the mean-field Gutzwiller ansatz, and captures quantum correlations and entanglement via projection onto an effective low-energy manifold. This ansatz can be exploited to study quantum phases observed in a large class of systems realizable in such experimental platforms and is useful to study quantum dynamics. We show that the relaxation dynamics of various out-of-equilibrium initial states under sudden quench of Hamiltonian parameters can be studied with this ansatz wavefunction within the framework of time-dependent variational principle. We present a quantitative comparison with small-scale exact diagonalization results in the 1D Bose-Hubbard model with and without external trapping potentials.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Avoided-crossings, degeneracies and Berry phases in the spectrum of quantum noise through analytic Bloch-Messiah decomposition [49.1574468325115]
"analytic Bloch-Messiah decomposition" provides approach for characterizing dynamics of quantum optical systems.<n>We show that avoided crossings arise naturally when a single parameter is varied, leading to hypersensitivity of the singular vectors.<n>We highlight the possibility of programming the spectral response of photonic systems through the deliberate design of avoided crossings.
arXiv Detail & Related papers (2025-04-29T13:14:15Z) - Probing quantum many-body dynamics using subsystem Loschmidt echos [39.34101719951107]
We experimentally investigate the subsystem Loschmidt echo, a quasi-local observable that captures key features of the Loschmidt echo.<n>In the short-time regime, we observe a dynamical quantum phase transition arising from genuine higher-order correlations.<n>In the long-time regime, the subsystem Loschmidt echo allows us to quantitatively determine the effective dimension and structure of the accessible Hilbert space in the thermodynamic limit.
arXiv Detail & Related papers (2025-01-28T14:51:37Z) - Emergent Fracton Hydrodynamics of Ultracold Atoms in Partially Filled Landau Levels [41.94295877935867]
We establish key signatures of fractional quantum Hall systems in their non-equilibrium quantum dynamics.<n>We show that in the lowest Landau level the system generically relaxes subdiffusively.<n>We discuss the prospect of rotating quantum gases as well as ultracold atoms in optical lattices for observing this unconventional relaxation dynamics.
arXiv Detail & Related papers (2024-10-09T18:00:02Z) - Exploring entanglement in finite-size quantum systems with degenerate ground state [0.0]
We develop an approach for characterizing non-local quantum correlations in spin systems with exactly or nearly degenerate ground states.<n> Estimating the von Neumann entropy of the random wave functions helps to reveal previously unknown features of the quantum correlations in the phases with degeneracy of the ground state.<n>Digital quantum simulations performed with quantum computers can provide accurate description of the entanglement of the degenerate systems even in the presence of noise.
arXiv Detail & Related papers (2024-10-01T08:56:34Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Effective Description of the Quantum Damped Harmonic Oscillator:
Revisiting the Bateman Dual System [0.3495246564946556]
We present a quantization scheme for the damped harmonic oscillator (QDHO) using a framework known as momentous quantum mechanics.
The significance of our study lies in its potential to serve as a foundational basis for the effective description of open quantum systems.
arXiv Detail & Related papers (2023-09-06T03:53:09Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Probing quantum many-body correlations by universal ramping dynamics [1.8437783410151665]
We present a novel method of probing quantum many-body correlation by ramping dynamics.
We show that the first-order correction on the finite ramping velocity is universal and path-independent.
Because our proposal uses the most common experimental protocol, we envision that our method can find broad applications in probing various quantum systems.
arXiv Detail & Related papers (2021-09-01T09:32:45Z) - Cavity QED with Quantum Gases: New Paradigms in Many-Body Physics [0.0]
We review the recent developments and the current status in the field of quantum-gas cavity QED.
Composite quantum-gas--cavity systems offer the opportunity to implement, simulate, and experimentally test fundamental solid-state Hamiltonians.
arXiv Detail & Related papers (2021-02-08T19:00:03Z) - Dynamical hysteresis properties of the driven-dissipative Bose-Hubbard
model with a Gutzwiller Monte Carlo approach [0.0]
We study the dynamical properties of a driven-dissipative Bose-Hubbard model in the strongly interacting regime.
We take classical and quantum correlations into account.
We show that approximation techniques relying on a unimodal distribution such as the mean field and $1/z$ expansion drastically underestimate the particle number fluctuations.
arXiv Detail & Related papers (2020-08-17T13:50:10Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.