Efficient optimization of expensive black-box simulators via marginal means, with application to neutrino detector design
- URL: http://arxiv.org/abs/2508.01834v2
- Date: Thu, 07 Aug 2025 16:33:16 GMT
- Title: Efficient optimization of expensive black-box simulators via marginal means, with application to neutrino detector design
- Authors: Hwanwoo Kim, Simon Mak, Ann-Kathrin Schuetz, Alan Poon,
- Abstract summary: We propose a new Black-box Optimization via Marginal Means (BOMM) approach.<n>BOMM uses a new estimator of a global $mathbfx*$ that can be efficiently inferred with limited runs in high dimensions.<n>We show that BOMM is consistent for optimization, but also has an optimization rate that tempers the ''curse-of-dimensionality'' faced by existing methods.
- Score: 1.5749416770494706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With advances in scientific computing, computer experiments are increasingly used for optimizing complex systems. However, for modern applications, e.g., the optimization of nuclear physics detectors, each experiment run can require hundreds of CPU hours, making the optimization of its black-box simulator over a high-dimensional space a challenging task. Given limited runs at inputs $\mathbf{x}_1, \cdots, \mathbf{x}_n$, the best solution from these evaluated inputs can be far from optimal, particularly as dimensionality increases. Existing black-box methods, however, largely employ this ''pick-the-winner'' (PW) solution, which leads to mediocre optimization performance. To address this, we propose a new Black-box Optimization via Marginal Means (BOMM) approach. The key idea is a new estimator of a global optimizer $\mathbf{x}^*$ that leverages the so-called marginal mean functions, which can be efficiently inferred with limited runs in high dimensions. Unlike PW, this estimator can select solutions beyond evaluated inputs for improved optimization performance. Assuming the objective function follows a generalized additive model with unknown link function and under mild conditions, we prove that the BOMM estimator not only is consistent for optimization, but also has an optimization rate that tempers the ''curse-of-dimensionality'' faced by existing methods, thus enabling better performance as dimensionality increases. We present a practical framework for implementing BOMM using the transformed additive Gaussian process surrogate model. Finally, we demonstrate the effectiveness of BOMM in numerical experiments and an application on neutrino detector optimization in nuclear physics.
Related papers
- High-Dimensional Bayesian Optimization Using Both Random and Supervised Embeddings [0.6291443816903801]
This paper proposes a high-dimensionnal optimization method incorporating linear embedding subspaces of small dimension.<n>The resulting BO method combines in an adaptive way both random and supervised linear embeddings.<n>The obtained results show the high potential of EGORSE to solve high-dimensional blackbox optimization problems.
arXiv Detail & Related papers (2025-02-02T16:57:05Z) - Sample-efficient Bayesian Optimisation Using Known Invariances [56.34916328814857]
We show that vanilla and constrained BO algorithms are inefficient when optimising invariant objectives.
We derive a bound on the maximum information gain of these invariant kernels.
We use our method to design a current drive system for a nuclear fusion reactor, finding a high-performance solution.
arXiv Detail & Related papers (2024-10-22T12:51:46Z) - Multi-fidelity Constrained Optimization for Stochastic Black Box
Simulators [1.6385815610837167]
We introduce the algorithm Scout-Nd (Stochastic Constrained Optimization for N dimensions) to tackle the issues mentioned earlier.
Scout-Nd efficiently estimates the gradient, reduces the noise of the estimator gradient, and applies multi-fidelity schemes to further reduce computational effort.
We validate our approach on standard benchmarks, demonstrating its effectiveness in optimizing parameters highlighting better performance compared to existing methods.
arXiv Detail & Related papers (2023-11-25T23:36:38Z) - Polynomial-Model-Based Optimization for Blackbox Objectives [0.0]
Black-box optimization seeks to find optimal parameters for systems such that a pre-defined objective function is minimized.
PMBO is a novel blackbox that finds the minimum by fitting a surrogate to the objective function.
PMBO is benchmarked against other state-of-the-art algorithms for a given set of artificial, analytical functions.
arXiv Detail & Related papers (2023-09-01T14:11:03Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Data-driven evolutionary algorithm for oil reservoir well-placement and
control optimization [3.012067935276772]
Generalized data-driven evolutionary algorithm (GDDE) is proposed to reduce the number of simulation runs on well-placement and control optimization problems.
Probabilistic neural network (PNN) is adopted as the classifier to select informative and promising candidates.
arXiv Detail & Related papers (2022-06-07T09:07:49Z) - Momentum Stiefel Optimizer, with Applications to Suitably-Orthogonal
Attention, and Optimal Transport [18.717832661972896]
New approach is proposed based on, for the first time, an interplay between thoughtfully designed continuous and discrete dynamics.
Method exactly preserves the manifold structure but does not require commonly used projection or retraction.
Its generalization to adaptive learning rates is also demonstrated.
arXiv Detail & Related papers (2022-05-27T18:01:45Z) - Optimum-statistical Collaboration Towards General and Efficient
Black-box Optimization [23.359363844344408]
We introduce an algorithm framework of managing the interaction between optimization error flux and statistical error flux evolving in the optimization process.
Our framework and its analysis can be applied to a large family of functions and partitions that satisfy different local smoothness assumptions.
In theory, we prove the algorithm enjoys rate-optimal regret bounds under different local smoothness assumptions.
arXiv Detail & Related papers (2021-06-17T02:37:39Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Global Optimization of Gaussian processes [52.77024349608834]
We propose a reduced-space formulation with trained Gaussian processes trained on few data points.
The approach also leads to significantly smaller and computationally cheaper sub solver for lower bounding.
In total, we reduce time convergence by orders of orders of the proposed method.
arXiv Detail & Related papers (2020-05-21T20:59:11Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.