論文の概要: Beyond Vulnerabilities: A Survey of Adversarial Attacks as Both Threats and Defenses in Computer Vision Systems
- arxiv url: http://arxiv.org/abs/2508.01845v1
- Date: Sun, 03 Aug 2025 17:02:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 20:32:48.717232
- Title: Beyond Vulnerabilities: A Survey of Adversarial Attacks as Both Threats and Defenses in Computer Vision Systems
- Title(参考訳): 脆弱性を超えて:コンピュータビジョンシステムにおける脅威と防御としての敵攻撃の調査
- Authors: Zhongliang Guo, Yifei Qian, Yanli Li, Weiye Li, Chun Tong Lei, Shuai Zhao, Lei Fang, Ognjen Arandjelović, Chun Pong Lau,
- Abstract要約: コンピュータビジョンシステムに対する敵対的攻撃は、ニューラルネットワークの堅牢性とセキュリティに関する基本的な前提に挑戦する重要な研究領域として浮上している。
この包括的調査は、敵のテクニックの進化の状況を調べ、その2つの性質を高度なセキュリティ脅威と貴重な防御ツールの両方として明らかにしている。
- 参考スコア(独自算出の注目度): 5.787505062263962
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks against computer vision systems have emerged as a critical research area that challenges the fundamental assumptions about neural network robustness and security. This comprehensive survey examines the evolving landscape of adversarial techniques, revealing their dual nature as both sophisticated security threats and valuable defensive tools. We provide a systematic analysis of adversarial attack methodologies across three primary domains: pixel-space attacks, physically realizable attacks, and latent-space attacks. Our investigation traces the technical evolution from early gradient-based methods such as FGSM and PGD to sophisticated optimization techniques incorporating momentum, adaptive step sizes, and advanced transferability mechanisms. We examine how physically realizable attacks have successfully bridged the gap between digital vulnerabilities and real-world threats through adversarial patches, 3D textures, and dynamic optical perturbations. Additionally, we explore the emergence of latent-space attacks that leverage semantic structure in internal representations to create more transferable and meaningful adversarial examples. Beyond traditional offensive applications, we investigate the constructive use of adversarial techniques for vulnerability assessment in biometric authentication systems and protection against malicious generative models. Our analysis reveals critical research gaps, particularly in neural style transfer protection and computational efficiency requirements. This survey contributes a comprehensive taxonomy, evolution analysis, and identification of future research directions, aiming to advance understanding of adversarial vulnerabilities and inform the development of more robust and trustworthy computer vision systems.
- Abstract(参考訳): コンピュータビジョンシステムに対する敵対的攻撃は、ニューラルネットワークの堅牢性とセキュリティに関する基本的な前提に挑戦する重要な研究領域として浮上している。
この包括的調査は、敵のテクニックの進化の状況を調べ、その2つの性質を高度なセキュリティ脅威と貴重な防御ツールの両方として明らかにしている。
本稿では, 画素空間攻撃, 物理的に実現可能な攻撃, 潜在空間攻撃の3つの主要領域にわたる敵攻撃手法の系統的解析を行う。
本研究は、FGSMやPGDといった初期の勾配に基づく手法から、運動量、適応的なステップサイズ、高度な転送性機構を取り入れた高度な最適化手法まで、技術的進化を辿ったものである。
物理的に実現可能な攻撃が、敵のパッチ、3Dテクスチャ、動的光学的摂動を通じて、デジタル脆弱性と現実世界の脅威のギャップを埋めることに成功したかを検討する。
さらに、内部表現のセマンティック構造を利用した潜在空間攻撃の出現について検討し、より伝達可能で有意義な敵の例を作成する。
従来の攻撃的応用の他に、生体認証システムにおける脆弱性評価や悪意ある生成モデルに対する保護に対する対人的手法の構成的利用について検討する。
我々の分析は、特にニューラルスタイルの転送保護と計算効率の要求において、重要な研究ギャップを明らかにしている。
この調査は、敵の脆弱性の理解を深め、より堅牢で信頼性の高いコンピュータビジョンシステムの開発を知らせることを目的として、今後の研究方向性の包括的分類、進化分析、同定に寄与する。
関連論文リスト
- Rethinking Spatio-Temporal Anomaly Detection: A Vision for Causality-Driven Cybersecurity [22.491097360752903]
我々は,空間的分散インフラにおける異常検出の促進を目的とした因果学習の視点を提唱する。
我々は因果グラフプロファイリング、多視点融合、連続因果グラフ学習の3つの主要な方向を特定し定式化する。
我々の目的は、拡張性、適応性、説明性、空間的根拠を持つ異常検出システムに向けた新しい研究軌道を構築することである。
論文 参考訳(メタデータ) (2025-07-10T21:19:28Z) - Modern DDoS Threats and Countermeasures: Insights into Emerging Attacks and Detection Strategies [49.57278643040602]
分散型サービス拒否(DDoS)攻撃は、オンラインサービスとインフラストラクチャに対する重大な脅威として継続する。
本稿は、過去10年間のDDoS攻撃と検出戦略の包括的調査を提供する。
論文 参考訳(メタデータ) (2025-02-27T11:22:25Z) - A Survey of Model Extraction Attacks and Defenses in Distributed Computing Environments [55.60375624503877]
モデル抽出攻撃(MEA)は、敵がモデルを盗み、知的財産と訓練データを公開することによって、現代の機械学習システムを脅かす。
この調査は、クラウド、エッジ、フェデレーションのユニークな特性がどのように攻撃ベクトルや防御要件を形作るのかを、緊急に理解する必要に起因している。
本研究は, 自動運転車, 医療, 金融サービスといった重要な分野において, 環境要因がセキュリティ戦略にどう影響するかを実証し, 攻撃手法と防衛機構の進化を系統的に検討する。
論文 参考訳(メタデータ) (2025-02-22T03:46:50Z) - A Review of the Duality of Adversarial Learning in Network Intrusion: Attacks and Countermeasures [0.0]
敵対的攻撃、特にディープラーニングモデルの脆弱性を狙った攻撃は、サイバーセキュリティに対するニュアンスで重大な脅威となる。
本研究は,データポジショニング,テストタイムエベイション,リバースエンジニアリングなど,敵対的な学習の脅威について論じる。
我々の研究は、敵の攻撃によって引き起こされるネットワークセキュリティとプライバシの潜在的な侵害に対処するための防御メカニズムを強化するための基盤となる。
論文 参考訳(メタデータ) (2024-12-18T14:21:46Z) - Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems [8.584570228761503]
転送可能な攻撃は、セキュリティ、プライバシー、システム完全性に深刻なリスクをもたらす。
この調査は、7つの主要なカテゴリにわたる転送可能な攻撃に関する、最初の包括的なレビューを提供する。
本稿では,AIシステムへのトランスファー可能な攻撃の基盤となるメカニズムと実践的意味について検討する。
論文 参考訳(メタデータ) (2023-11-20T14:29:45Z) - Physical Adversarial Attacks For Camera-based Smart Systems: Current
Trends, Categorization, Applications, Research Challenges, and Future Outlook [2.1771693754641013]
本研究の目的は,身体的敵意攻撃の概念を深く理解し,その特徴を分析し,特徴を識別することである。
本稿では, 対象タスクに応じて異なるアプリケーションで分類した, 様々な物理的敵攻撃手法について検討する。
本研究は,これらの攻撃手法の有効性,ステルス性,ロバスト性の観点から評価する。
論文 参考訳(メタデータ) (2023-08-11T15:02:19Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Physical Adversarial Attack meets Computer Vision: A Decade Survey [55.38113802311365]
本稿では,身体的敵意攻撃の概要を概観する。
本研究は,身体的敵意攻撃の性能を体系的に評価する第一歩を踏み出した。
提案する評価基準であるhiPAAは6つの視点から構成される。
論文 参考訳(メタデータ) (2022-09-30T01:59:53Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。