Test-Time Training for Speech Enhancement
- URL: http://arxiv.org/abs/2508.01847v1
- Date: Sun, 03 Aug 2025 17:02:55 GMT
- Title: Test-Time Training for Speech Enhancement
- Authors: Avishkar Behera, Riya Ann Easow, Venkatesh Parvathala, K. Sri Rama Murty,
- Abstract summary: This paper introduces a novel application of Test-Time Training (TTT) for Speech Enhancement.<n>It addresses the challenges posed by unpredictable noise conditions and domain shifts.<n>We show consistent improvements across speech quality metrics, outperforming the baseline model.
- Score: 2.9598903898834497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel application of Test-Time Training (TTT) for Speech Enhancement, addressing the challenges posed by unpredictable noise conditions and domain shifts. This method combines a main speech enhancement task with a self-supervised auxiliary task in a Y-shaped architecture. The model dynamically adapts to new domains during inference time by optimizing the proposed self-supervised tasks like noise-augmented signal reconstruction or masked spectrogram prediction, bypassing the need for labeled data. We further introduce various TTT strategies offering a trade-off between adaptation and efficiency. Evaluations across synthetic and real-world datasets show consistent improvements across speech quality metrics, outperforming the baseline model. This work highlights the effectiveness of TTT in speech enhancement, providing insights for future research in adaptive and robust speech processing.
Related papers
- A Novel Data Augmentation Approach for Automatic Speaking Assessment on Opinion Expressions [3.505838221203969]
We propose a novel training paradigm to generate diverse responses of a given proficiency level.<n>We convert responses into synthesized speech via speaker-aware text-to-speech synthesis.<n>A multimodal large language model integrates aligned textual features with speech signals to predict proficiency scores directly.
arXiv Detail & Related papers (2025-06-04T15:42:53Z) - VQ-CTAP: Cross-Modal Fine-Grained Sequence Representation Learning for Speech Processing [81.32613443072441]
For tasks such as text-to-speech (TTS), voice conversion (VC), and automatic speech recognition (ASR), a cross-modal fine-grained (frame-level) sequence representation is desired.<n>We propose a method called Quantized Contrastive Token-Acoustic Pre-training (VQ-CTAP), which uses the cross-modal sequence transcoder to bring text and speech into a joint space.
arXiv Detail & Related papers (2024-08-11T12:24:23Z) - Test-Time Training on Graphs with Large Language Models (LLMs) [68.375487369596]
Test-Time Training (TTT) has been proposed as a promising approach to train Graph Neural Networks (GNNs)
Inspired by the great annotation ability of Large Language Models (LLMs) on Text-Attributed Graphs (TAGs), we propose to enhance the test-time training on graphs with LLMs as annotators.
A two-stage training strategy is designed to tailor the test-time model with the limited and noisy labels.
arXiv Detail & Related papers (2024-04-21T08:20:02Z) - GRASS: Unified Generation Model for Speech-to-Semantic Tasks [7.044414457214718]
We introduce a unified end-to-end (E2E) framework that generates target text conditioned on a task-related prompt for audio data.
Our proposed model achieves state-of-the-art (SOTA) results on many benchmarks covering speech named entity recognition, speech sentiment analysis, speech question answering, and more.
To facilitate future work on instruction fine-tuning for speech-to-semantic tasks, we release our instruction dataset and code.
arXiv Detail & Related papers (2023-09-06T06:44:26Z) - ASiT: Local-Global Audio Spectrogram vIsion Transformer for Event
Classification [42.95038619688867]
ASiT is a novel self-supervised learning framework that captures local and global contextual information by employing group masked model learning and self-distillation.
We evaluate our pretrained models on both audio and speech classification tasks, including audio event classification, keyword spotting, and speaker identification.
arXiv Detail & Related papers (2022-11-23T18:21:09Z) - Speech Enhancement with Score-Based Generative Models in the Complex
STFT Domain [18.090665052145653]
We propose a novel training task for speech enhancement using a complex-valued deep neural network.
We derive this training task within the formalism of differential equations, thereby enabling the use of predictor-corrector samplers.
arXiv Detail & Related papers (2022-03-31T12:53:47Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
We report the first exploration of the prompt tuning paradigm for speech processing tasks based on Generative Spoken Language Model (GSLM)
Experiment results show that the prompt tuning technique achieves competitive performance in speech classification tasks with fewer trainable parameters than fine-tuning specialized downstream models.
arXiv Detail & Related papers (2022-03-31T03:26:55Z) - Improving Distortion Robustness of Self-supervised Speech Processing
Tasks with Domain Adaptation [60.26511271597065]
Speech distortions are a long-standing problem that degrades the performance of supervisely trained speech processing models.
It is high time that we enhance the robustness of speech processing models to obtain good performance when encountering speech distortions.
arXiv Detail & Related papers (2022-03-30T07:25:52Z) - A study on the efficacy of model pre-training in developing neural
text-to-speech system [55.947807261757056]
This study aims to understand better why and how model pre-training can positively contribute to TTS system performance.
It is found that the TTS system could achieve comparable performance when the pre-training data is reduced to 1/8 of its original size.
arXiv Detail & Related papers (2021-10-08T02:09:28Z) - Time-domain Speech Enhancement with Generative Adversarial Learning [53.74228907273269]
This paper proposes a new framework called Time-domain Speech Enhancement Generative Adversarial Network (TSEGAN)
TSEGAN is an extension of the generative adversarial network (GAN) in time-domain with metric evaluation to mitigate the scaling problem.
In addition, we provide a new method based on objective function mapping for the theoretical analysis of the performance of Metric GAN.
arXiv Detail & Related papers (2021-03-30T08:09:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.