論文の概要: DiffusionFF: Face Forgery Detection via Diffusion-based Artifact Localization
- arxiv url: http://arxiv.org/abs/2508.01873v1
- Date: Sun, 03 Aug 2025 18:06:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.101181
- Title: DiffusionFF: Face Forgery Detection via Diffusion-based Artifact Localization
- Title(参考訳): DiffusionFF:Diffusion-based Artifact Localizationによる顔偽造検出
- Authors: Siran Peng, Haoyuan Zhang, Li Gao, Tianshuo Zhang, Bao Li, Zhen Lei,
- Abstract要約: DiffusionFFは、拡散に基づくアーティファクトローカライゼーションによる顔偽造検出を強化する新しいフレームワークである。
本手法は,高次拡散モデルを用いて高次構造相似性(DSSIM)マップを生成し,微妙な操作の痕跡を効果的に捉える。
- 参考スコア(独自算出の注目度): 21.139016641596676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid evolution of deepfake generation techniques demands robust and accurate face forgery detection algorithms. While determining whether an image has been manipulated remains essential, the ability to precisely localize forgery artifacts has become increasingly important for improving model explainability and fostering user trust. To address this challenge, we propose DiffusionFF, a novel framework that enhances face forgery detection through diffusion-based artifact localization. Our method utilizes a denoising diffusion model to generate high-quality Structural Dissimilarity (DSSIM) maps, which effectively capture subtle traces of manipulation. These DSSIM maps are then fused with high-level semantic features extracted by a pretrained forgery detector, leading to significant improvements in detection accuracy. Extensive experiments on both cross-dataset and intra-dataset benchmarks demonstrate that DiffusionFF not only achieves superior detection performance but also offers precise and fine-grained artifact localization, highlighting its overall effectiveness.
- Abstract(参考訳): ディープフェイク生成技術の急速な進化は、堅牢で正確な顔偽造検出アルゴリズムを必要とする。
画像が操作されたかどうかを判断することは依然として不可欠であるが、偽造品を正確にローカライズする能力は、モデル説明性の向上とユーザ信頼の向上にますます重要になっている。
この課題に対処するために、拡散に基づくアーティファクトローカライゼーションによる顔偽造検出を強化する新しいフレームワークであるDiffusionFFを提案する。
本手法は,高次拡散モデルを用いて高次構造相似性(DSSIM)マップを生成し,微妙な操作の痕跡を効果的に捉える。
これらのDSSIMマップは、事前訓練された偽造検出器によって抽出された高レベルの意味的特徴と融合し、検出精度が大幅に向上した。
クロスデータセットとイントラデータセットのベンチマークの広範な実験により、DiffusionFFは優れた検出性能を達成するだけでなく、精密できめ細かいアーティファクトのローカライゼーションも提供し、全体的な効果を強調している。
関連論文リスト
- Anomaly detection using Diffusion-based methods [15.049468347670421]
本稿では,拡散モデルによる異常検出の有用性について検討する。
コンパクトデータセットと高解像度データセットの両方における偏差を識別する効果に重点を置いている。
論文 参考訳(メタデータ) (2024-12-10T14:17:23Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - DiffusionFake: Enhancing Generalization in Deepfake Detection via Guided Stable Diffusion [94.46904504076124]
ディープフェイク技術は、顔交換を極めて現実的にし、偽造された顔コンテンツの使用に対する懸念を高めている。
既存の方法は、顔操作の多様な性質のため、目に見えない領域に一般化するのに苦労することが多い。
顔偽造者の生成過程を逆転させて検出モデルの一般化を促進する新しいフレームワークであるDiffusionFakeを紹介する。
論文 参考訳(メタデータ) (2024-10-06T06:22:43Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
高レベルの意味的特徴は摂動の影響を受けにくく、フォージェリー固有の人工物に限らないため、より強い一般化がある。
我々は、トランスフォーマーベースのビデオネットワークを活用する新しいディープフェイク検出フレームワークUniForensicsを導入し、顔の豊かな表現のためのメタファンクショナルな顔分類を行う。
論文 参考訳(メタデータ) (2024-07-26T20:51:54Z) - DA-HFNet: Progressive Fine-Grained Forgery Image Detection and Localization Based on Dual Attention [12.36906630199689]
DA-HFNet鍛造画像データセットをテキストまたは画像支援GANおよび拡散モデルで作成する。
我々のゴールは、階層的なプログレッシブネットワークを使用して、異なるスケールの偽造物を検出およびローカライゼーションするために捕獲することである。
論文 参考訳(メタデータ) (2024-06-03T16:13:33Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
既存の偽造検出方法は、未確認領域の真正性を決定する不満足な一般化能力に悩まされている。
ACMF(Attention Consistency Refined masked frequency forgery representation model)を提案する。
いくつかのパブリックフェイスフォージェリーデータセットの実験結果から,提案手法の性能は最先端の手法と比較して優れていることが示された。
論文 参考訳(メタデータ) (2023-07-21T08:58:49Z) - Exposing the Fake: Effective Diffusion-Generated Images Detection [14.646957596560076]
本稿では拡散生成画像検出(SeDID)のためのステップワイド誤差と呼ばれる新しい検出法を提案する。
SeDIDは拡散モデルのユニークな特性、すなわち決定論的逆転と決定論的逆退誤差を利用する。
我々の研究は拡散モデル生成画像の識別に重要な貢献をしており、人工知能のセキュリティ分野における重要なステップとなっている。
論文 参考訳(メタデータ) (2023-07-12T16:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。